
Metamodeling Foundation for Software and
Data Integration

Henning Agt, Gregor Bauhoff, Mario Cartsburg, Daniel Kumpe, Ralf Kutsche,
and Nikola Milanovic

Technische Universität Berlin
{hagt,gbauhoff,mcartsbg,dkumpe,rkutsche,nmilanov}@cs.tu-berlin.de

Abstract. We propose a model-based methodology for integration of
heterogeneous distributed systems, based on the multi-level modeling
abstractions, automated conflict analysis and connector code generation.
The focus in this paper is on the metamodeling foundation necessary for
this process, and consequently we introduce computation independent,
platform specific, platform independent and semantic metamodels, which
generate a set of domain specific languages used to describe software and
data integration scenarios.

1 Introduction

Integration of heterogeneous distributed IT-systems is one of the major problems
and cost-driving factors in the software industry today [18]. The problem is not
new, and several solution possibilities exist. Schema matching approaches [19]
try to detect dependencies and conflicts between data model elements at the
model or instance levels. Extract-Transformation-Load (ETL) tools use schema
matching methodology to enable easier integration of multiple data sources.
Many languages exist that enable specification of transformations between two
data models, such as Ensemble [9]. The usability of all mentioned approaches
suffers greatly with increased heterogeneity of the underlying data sources.

The second major group of integration approaches is focused on the Service
Oriented Architecture (SOA). In SOA, all system interfaces are wrapped as
service endpoints and accessible to the Enterprise Service Bus (ESB) engine,
which orchestrates data and functional logic. However, it is expected that all
service endpoints are compatible and no data or behavior conflicts will occur. If
they do, either the endpoint itself has to be modified (frequently impossible), or
the XSLT or Java code snippet (BPELJ) has to be written, correcting the conflict
at the message level. There are approaches which fill the niche between two main
groups such as mapping editors (e.g., Altova MapForce) and extended UML
Editors (e.g., E2E Bridge), with very low or no support for the compositional
conflict analysis and the code (endpoint) generation.

For these reasons, as a part of the R&D program of the German govern-
ment for regional business initiatives, the project BIZYCLE (www.bizycle.de)
was started in early 2007 in order to investigate in large-scale the potential
of model-based software and data integration methodologies, tool support and



practical applicability for different industrial domains1. The BIZYCLE integra-
tion process [12],[13],[17] is based on multi-level modeling abstractions. The in-
tegration scenario is first modeled at the computation independent (CIM) level,
where business aspects of an integration scenario are described. The model is
then refined at the platform specific (PSM) level, where technical interfaces of
the systems that should be integrated are described. The PSM interface descrip-
tions are then abstracted to platform independent (PIM) level, where a conflict
analysis process takes place. Based on the result of the conflict analysis, connec-
tor model and code are generated and deployed.

As the metamodels behind the integration process are our focus, this paper
is structured as follows: first the CIM metamodel is described, followed by one
selected PSM metamodel and PIM metamodel. After that, we propose a way to
semantically annotate model elements using semantical metamodel. Finally, we
show how, based on the proposed metamodels, conflict analysis and connector
code generation may be performed.

2 Computation Independent Metamodel

The BIZYCLE integration process captures early stages of an integration sce-
nario at the computation independent model (CIM) level. It describes scenario
requirements with an abstract business process and data flow model, regardless
of the technical details of the underlying systems. Furthermore, it forms a basis
for the conflict analysis which identifies interface interoperability mismatches.

The integration scenario is described in terms of activities and transitions,
as well as data exchange aspects and their hierarchical structure (see Figure 1).
BusinessComponent represents a software or data artifact that is involved in the
scenario. Business components do not necessarily represent exactly one physical
system, e.g., functional access can be provided as a Web service and data access
with an SQL interface. A special business component is the BusinessConnector,
which handles interconnections between the components. The abstract meta-
classes ActivityNode and ActivityEdge are used to express data and control
flow of the integration scenario.

Business components perform different activities. ControlNodes are used to
determine the beginning and the end of an integration scenario. ExportInterface
or ImportInterface are used to describe the terms of data exchange or func-
tion calls. Activities of the type InternalComponentAction express actions that
are not relevant to the concrete data flow, but are useful for understanding the
context of the scenario. The metamodel also defines BusinessFunction that
represents functionality of the integrated artifacts. It processes incoming data or
performs a certain task required by other artifacts. Business functions can only
be used inside of business components. ConnectorFunction is used to predefine
1 This work is partially supported by the Federal Ministry of Education and Research

(BMBF) under grant number 03WKBB1B.



InternalComponentAction

-name : String

BusinessComponent

ConnectorFunction

BusinessConnector

-name : String

IntegrationScenario

BusinessInterface

-description : String

BusinessFunction

-name : String

BusinessObject

ImportInterface ExportInterface

-name : String

ActivityNode

ControlNode

-name : String

ActivityEdge
ControlFlow

Connection

InitialNode FinalNode

Transformer, Router, ...

transports

-businessObject
1..*

-connection0..*

includes

-businessObject

1..*

-scenario1

in -targetNode 1-incomingEdge0..*

out-outgoingEdge0..* -sourceNode 1

connects

-component2..* -connector0..*

includes

-components

1..*

-scenario

1

includedEdges

-edge0..*

-component 1

input

-inputBO
0..*

-targetFunction0..*

includedNodes

-node 1..*

-component1

handles

-businessObject

1..*

-connector0..*

output

-outputBO 0..*

-sourceFunction0..*

consistsOf

-part
0..*

-whole
0..1

Fig. 1. CIMM – Basic metaclasses for artifact, process and data modeling (excerpt)

functionality of the connector. It can represent control (e.g., Timer) or conflict
resolution functions (e. g. Transformer, Router or Aggregator), as in [8].

Two different kinds of edges can connect activities of the integration process.
The ControlFlow is used to express the transition from one activity to an-
other inside of a business component. The Connection models data and con-
trol flow between different business components or connectors and transports
BusinessObject elements, which can be hierarchically structured independent
of any data type of the underlying interfaces. Business objects are produced
or consumed by BusinessFunctions. Constraints in the metamodel assure the
correct combination of activity edges and nodes.

Four CIM views are defined that graphically show relevant aspects of the
model: flow, object, connection and function view. The CIM flow view shows
the sequence of the integration activities and transitions, similarly to the UML
activity diagram. The object view consists of the business object and their struc-
ture only. The connection view hides the internal behavior of the components
and displays business objects related to their connections. Finally, the function
view shows business functions and their input and output business objects.

3 Platform Specific Metamodels

Platform specific metamodels (PSMM) describe the structure, behavior, commu-
nication and non-functional properties of the platform-specific system interfaces.
The communication part describes information required to establish a connec-
tion with the system. The structure part provides information about platform-
specific type system. The property part describes non-functional properties, such
as performance, authorization, security or logging. It is also possible to annotate
model elements using concepts from an existing ontology (see Section 5).

Ecore serves as a metamodel for the PSMMs [2]. Consequently the PSMMs
are at the M2-level of the MOF hierarchy. The elements of the PSMMs are lin-



guistic instances (see [11]) of the Ecore metamodel. The PSMMs define a domain
specific language (DSL) for the description of software system interfaces at the
M1 level. To be more precise, the elements of PSMMs build the vocabulary for
the interface descriptions. The system under study is provided on the M0-level.
Every metamodel-layer describes only concepts for one layer beneath, there-
fore one has a linear metamodel hierarchy over four semantic abstraction levels,
conforming to the MOF-hierarchy. An overview about the different metamodel
layers is given in [6] and different metamodeling roles are defined in [11].

We currently provide metamodel support for the following platforms: ERP
systems (SAP R/3 and AvERP), relational and XML databases, Web Services,
XML files, J2EE components and .NET applications. As an illustration, in the
following subsection we describe the SAP R/3 metamodel in more detail. All
other PSMMs have a similar package composition to provide adequate DSLs for
the remaining platforms.

3.1 SAP R/3 Platform Specific Metamodel

SAP R/3 is one of the most frequently used enterprise resource planning (ERP)
systems. The platform specific metamodel of SAP R/3 consists mainly of classes
referring to the remote accessible methods, so-called BAPIs (Business Applica-
tion Programming Interface) and IDOCs (Intermediate Document). BAPIs are
remote accessible functions and IDOCs are structured files. The schema of an
IDOC file is defined within an IDOC Type. The IDOC type consists of a hier-
archic tree with segments and fields inside the segments. The entry point to the
hierarchic tree-based model is the element SAP R3, which represents a concrete
SAP R3 system installation. The SAP R3 consist of at least one SAP R3 In-
terface. This element consist of the elements Access, SAP Business Component
and IDOC Type. The whole parameter and structure part can be built automat-
ically through extraction of relevant information from the SAP Business Object
Repository (BOR). The core metamodel (excerpt) is shown in Figure 2.

The elements Communication Channel and Access belong to the package
communication. This package collects information about the physical access,
including user name, password, host name, language, system number, sap client
and the communication channel. A communication channel can be synchronous,
asynchronous, transactional or queued RFC (remote function control), simple
file transfer, or e-mail. The concrete communication channel depends on the
type of information exchange. IDOCs will be exchanged over file transfer, e-mail
or transactional RFC, and BAPIs will be accessed using synchronous RFC.

Parameters can have the structured, table and field types. Structured and
table types can consist of field types, which are atomic. Field types are JCO
(Java Connector) types, more precisely they are wrapper classes. JCO offers a
library for Java which supports the access to a SAP R3 system. JCO converts
the SAP R3 types to Java types and backwards.

The abstract element Method is linked to the package Behavior and the
element SAP R3 is linked to the package Property. For more information about
behavior and properties, see section 4 about platform independent metamodel.



Parameters and segments have references to the domain object elements of
the semantic metamodel (see Section 5) and can therefore be linked with do-
main object within an ontology. Likewise, all methods can be linked to domain
functions.

Structure

SimpleType

XSTRING STRING FLOAT CHARINT2BYTE INT1 DATE TIMENUMINTBCD

+length : Integer [0..1]
+decimal : Integer [0..1]

FieldType

+name : String [1]

SAPType

StructType TableType

Communication

+encoding : String

CommunicationElement

+value : String [1]

AccessElement

omm

property

PropertyRoot

behavior

BehaviorRoot

+offset : String [1]
+int_length : String [1]
+Pos_in_Segment : String [1]
+ext_lenght : String [1]
+name : String [1]

Field

+name : String [1]
+instance_independent : Boolean [1]
+instance_generating : Boolean [1]

Method

+name : String [1]

SAPBusinessComponent

+Receiver : String [1]
+Sender : String [1]
+IDOC_Typeinfo : String [1]
+Number : String [1]

ControlRecord

+mandatory : Boolean [1]
+lenght : Integer [1]
+max_Anzahl : Integer [1]
+released : String
+name : String [1]

Segment

+mandatory : Boolean [1]

Import

+description : String

AnnotatableElement

+description : String

AnnotatableElement

+name : String [1]

SAPBusinessObject

+name : String [1]

Parameter

+name [1]

IDOCType

+name : String [1]

Access

ComChannel

+name : String [1]

SAP_R3_Interface

+name : String [1]

SAP_R3

DataRecord

BAPI

Export

1..*

1..*

1

1..*

1

1

1..*

6

1

0..*

1

1

+parent

1

+child

0..*

1..*

1..*

1..*

1..*

1..*

1..*

1..* 1 1

1..*

Fig. 2. Excerpt from Core SAP R/3 metamodel



4 Platform Independent Metamodel

The purpose of the platform independent metamodel (PIMM) is to facilitate sys-
tem interoperability by abstracting all platform specific heterogeneous interface
details. The abstraction process is realized by a PSM-to-PIM transformation
using ATL [1]. For every PSMM there exists a set of transformation rules which
translates the PSM into the common abstraction layer, the PIM. As stated in
[14] the PIMM facilitates integration of heterogeneous interfaces. At the PIM
level it is possible to represent different interface details on a common basis.

At the PIM level an Interface represents a single system gateway which is
able to handle data as input and/or output in one single step. Hence PIMM-
Interfaces represent an abstraction for all platform specific operations, meth-
ods, functions, files etc. PIMM distinguishes between three interface types:
FunctionInterface, MethodInterface and DocumentInterface. The first rep-
resents a non-object-oriented interface, the second an object-oriented interface
and the last a data structure-based interface. All interfaces have different corre-
sponding metaclasses: DocumentInterfaces have only one root Type and no pa-
rameters, FunctionInterfaces can have different FunctionParameters, each with
a corresponding type and MethodInterfaces can have object-based parameters
with object-identity represented by IEObject. Due to this fact, our design deci-
sion was not to generalize everything into one single interface type. All interface
types are still platform independent from a technical point of view.

Every interface has its own parent container, the system which exposes it,
modeled by IntegratableElement. Each interface contains associations to dif-
ferent parts of the PIMM which will described in the following subsections (see
basic metaclasses in Figure 3).

structure

WrappedImportParameter WrappedExportParameter

BiDirectionalParameter
WrappedParameter

FunctionParameter DocumentElement

WrappedAttribute
ImportParameter ExportParameter

-name : String [1]

TypedElement

-name : String

IntegratableElement

DocumentInterfaceFunctionInterface MethodInterface

IEObject

OOParameter

-name : String

Interface

OOAttribute

IEDocumentIEModule

hasParameter
1

0..*

hasAttribute

0..*

1

hasParameter

0..*

1

isOfType-hasTypeOf

1

-isTypeFor 0..*

has

0..*

1

hasParameter
0..*

1

isOfType

1

0..*offers

0..*

1

offers

0..*

1

deliver

0..*

1

has

*

1

Fig. 3. PIMM - basic metaclasses for interfaces (excerpt)



4.1 Structure and Communication

The structure part (Figure 4) includes the common type system with the abstract
super metaclass Type and different sub-metaclasses to express SimpleTypes
(String, Number, Boolean) as well as ComplexTypes. The abstract TypedElement
represents an element with a specific meaning (semantics) and represents a
value container at runtime, e.g. ImportParameter. A TypedElement has ex-
actly one association to a type but vice versa a type can belong to arbitrarily
TypedElements, which means a Type can be ’reused’. For each interface type,
different sub-metaclasses of TypedElement are provided: WrappedParameter,
FunctionParameter and DocumentElement.

An interface may have its own interaction rules. These can be described by
communication patterns such as MessageExchangePatterns, or different Call-
and Event-types. Knowing platform independent communication details is es-
sential to be able to interact with every interface in the proper way. During
communication conflict analysis, incompatible call mechanisms are detected and
fixed (as far as possible automatically).

-name : String [1]

Type

-name : String [1]

TypedElement

WrappedImportParameterWrappedExportParameter

BiDirectionalParameter

-optional : Boolean [0..1]
-exclusive : Boolean [0..1]

Field

-minCount : Integer [0..1]
-maxCount : Integer [0..1]

AbstractCollection

-description : String [0..1]

AnnotatableElement

-minValue : Integer [0..1]
-maxValue : Integer [0..1]
-decimalPlaces : Integer

Number

-minValue : String [0..1]
-maxValue : String [0..1]
-format : String [1]

PointInTime

WrappedParameter

FunctionParameter

-length : Integer [0..1]
-charset : String [0..1]

StringDocumentElement

WrappedAttribute

-notNull : Boolean [1]

ForeignKey

ImportParameter

ExportParameter

-regex : String [1]

RegexType

ComplexType

SimpleTypeListElement

OrderedBag OrderedSet
PrimaryKey

MapValue

Boolean

MapKey

Opaque

Map

Bag Set

hasListElement

1

linksTo

0..*1

hasType

10..*

hasKey

1

hasValue

1

hasField

1..*

Fig. 4. PIMM - structure part

4.2 Property and Behavior

Non-functional properties are used to characterize interface capability (provided)
and expectations (required) properties. The root node PropertyRoot is respon-
sible for including every PropertyContainer which is derived to RequirementPC
and CapabilityPC element. Every PropertyElement is a child of exactly one
of these two sub-metaclasses. The metaclass QualityOfService is the upper
metaclass of every QoS property and has an association to a Metric. All metrics
have the AbstractMetric as their upper metaclass. Based on this metamodel
construction every QoS can be combined with every metric. During property
conflict analysis, CapabilityPCs and RequirementPCs are related to each other
in order to extract incompatible process flow graphs.



Behavior of a system is described using OCL and process algebra metaclasses.
The OCL can be used to define parameter and function constraints:conditions
between parameter values, pre-conditions, post-conditions and invariants using
abstract states. Process algebra interface call order describes the allowed call
behavior from a client side view. The connector (mediator) acts as a client and
calls different interfaces (e.g., methods) sequentially or concurrently.

5 Semantic and Annotation Metamodel

One of the challenges in software and data integration projects is the (semi)-
automatic detection of mismatches in interface semantics. A prerequisite for the
semantic analysis is the semantic description of the integration scenario at CIM
and PSM/PIM abstraction levels. Our current solution follows the approach of
a shared domain ontology [20] to subsume the semantic descriptions that can be
used in several integration projects.

The semantic metamodel SMM (Figure 5) allows to create a graph of triples
in terms of subject, predicate, and object relations, similar to RDF. Subjects
and objects are modeled with the SemanticConcept metaclass that can be ei-
ther a DomainObject (knowledge representation of data) or a DomainFunction
(knowledge representation of functionality). Semantic concepts are linked with
Predicates. The metamodel includes predefined predicates which we identi-
fied as relevant for knowledge relations in integration scenarios: generalization
(IsA), data processing (Input, Output), containment (Has) and sets (ListOf).
The CustomPredicate allows the creation of user specific relations.

SemanticConcept

-name : String

DefinedPredicate

CustomPredicate

-description : String

DomainFunction

Predicate

-name : String

DomainObject

Domain

-name : String

Ontology

-name : String
Output

ListOf

Input

IsA

Has

-concept 1..*

-domain1

-predicate 0..*

-domain1
-domains

1..*-ontology

1

-spredicate 0..*

-subject 1 -object1

-opredicate0..*

partOf

-subDomain

0..*

-superDomain

0..1

Fig. 5. Semantic metamodel

The association of heterogeneous artifacts such as documents, service inter-
faces, business processes, web resources and models with semantic concepts is
called semantic annotation [10][4]. The goal of the semantic annotation is a dis-
tinct semantic characterization of abstract data definitions, underlying interfaces
and interface element structures to enable a (semi)-automatic conflict analysis
and resolution. We distinguish between data-oriented annotations and function-
oriented annotations.



DomainFunctionAnnotation DomainObjectAnnotation

EnterpriseJavaBean

-name : String

Method

-name : String
-Transaction : Boolean

(from PSMMJ2EEEJB)

DomainFunction

CollectionType

Parameter

-number : Integer
-name : String

DomainObject

ComplexType

SimpleType

Field

-name : String

J2EEType

-name : String

(from AMM)

(from SMM)

source

-j2eeEJB0..*

source

-j2eeMethod0..*

source

-j2eeParameter0..*

-field

0..*

-parameter

0..*

source

-j2eeField

0..*

-j2eeType

0..1

target

-domainFunction1..*

-annotation1

target

-domainObject1..*

-annotation1

-method

1..*

-j2eeType 0..1

Fig. 6. Excerpt of the annotation metamodel - J2EE annotations

The annotation metamodel (AMM) offers both kinds of annotations. They
are realized by a model weaving technique [5]. Figure 6 shows an excerpt of
the AMM for J2EE systems to exemplary illustrate the annotation capabili-
ties. The AMM offers the DomainFunctionAnnotation metaclass to link the
functional parts of the platform specific metamodel with the domain function
of the semantic metamodel. On the right side of the picture, all data related
elements of the J2EE PSMM are linked to the semantic metamodel using the
DomainObjectAnnotation. In addition, the AMM contains all further associa-
tions to other annotateable metamodel elements (AMM is implemented as Ecore
model with EReferences to all the other Ecore models). One of the main advan-
tages of semantic annotation through all levels of abstraction is the traceability
of information. Apart from the annotation metaclasses, the AMM also offers
means to combine annotations with logical operators. With the operators and
varied use of single or multiple references it is possible to build containment,
choice and multiple representation expressions.

6 Conflict Analysis

The metamodels forming DSL foundation at CIM, PSM and PIM levels are used
for two main purposes: conflict analysis of interface mismatches and connector
code generation. The conflict analysis algorithm examines interface descriptions
at the PIM level in conjunction with the abstract process and data requirement
definitions at the CIM level.

The semantic analysis uses the ontology and semantic annotations to check
whether the abstract data flow requirements at the CIM level can be fulfilled
by interface descriptions at the PSM/PIM level. Additionally, it determines de-
pendencies of interface parameters and verifies their functional annotations ac-
cording to the business function definitions in the CIM model. Using logical
reasoning, mismatched requirements are resolved if possible. The results of the



analysis are requirement mappings of the abstract business objects to exporting
and importing interfaces elements at the PSM/PIM level. An in-depth descrip-
tion of the semantic annotation and conflict analysis can be found in [3].

The behavior analysis derives a first interface call order. Dependencies and
process definitions at the CIM level are checked against the behavior constraints
of the interfaces, such as pre- and post-conditions. Closely related is the property
analysis that examines interfaces’ QoS properties and metrics, such as WCET
or reliability [16]. The result of both analyses is a refined interface call order.
The communication analysis then takes into account characteristics of interface
interaction [15]. The results of this analysis, together with the information from
the PSM level, are used to generate application endpoints that communicate
with the system and offer a common access pattern to the connector.

Finally, the structure analysis overcomes the structural heterogeneity of the
interfaces by performing range of values comparison, identifying required data
type converters as well as creating a message processor lists for the e. g., merge,
split or filter of data structures. The work of integration specialists is hence sup-
ported to a certain degree of automation, but due to the complexity of software
systems a fully automated conflict resolution is difficult to accomplish in general
case. Remaining conflicts or multiple conflict-free choices are resolved manually.

7 Connector generation

Based on the models describing the integration scenario and results of the conflict
analysis, the connector component model and code are generated. A connector is
an automatically generated component, which is used to overcome all discovered
conflicts and enable technical, semantical and business interoperation. It is based
on the principles of message oriented middleware (MOM), and its metamodel is
accordingly based on the message passing.

The connector generation starts with the ChannelAdapter which com-
prises ApplicationEndpoint and MessageGateway. ApplicationEndpoint im-
plements the technical interoperability, and is able to call remote system in-
terfaces. It passes export parameters to the MessageGateway, which serializes
them into Message. In the other direction, MessageGateway deserializes a mes-
sage and passes it to the ApplicationEndpoint. Messages are further trans-
ported by Channels which can be either 1-1 channels or publish/subscribe.
MessageProcessors perform conflict resolution by executing aggregation, rout-
ing, transformation, enrichment etc. functions. Application endpoints can be
generated using standard code generation methods or using model interpreta-
tion. Core connector logic (Channels and Message Processors) are interpreted
based on the UML Action Semantics description.

The code generation approach is based on Java Emitter Template (JET). The
first step is to read all import and export parameters and create Java classes out
of them, where each parameter is wrapped within one class. In this step, PSMM
types are transformed to the PIMM (Java) types. The second step is to create a
Java method for each function modeled in the PSM. This method encapsulates



access to the target system. Import parameters are sent to the application end-
point as a hash map, equivalently, export parameters are also received as a hash
map. Alternative is to use model interpretation, where application endpoints are
built with Java code at runtime, starting with the interpretation of the platform
specific model using the model interpreter component. It reads the Ecore-file
of an interface and initiates a connection. Afterwards the interpreter builds a
Java object, which implements the Interface ICallableObject. It consists of exe-
cutable functions which conform to the PSM. The endpoint gateway component
is responsible for receiving and sending of messages. It provides an interface
with methods for registration of the business connector, in order to support the
data transfer. Data converter supports translation of data into different formats,
allowing a lossless and smooth data exchange within an application endpoint.

UML Action Semantics models are used to describe internal behavior of the
connector core components. We extended basic UML Action Semantics meta-
model to allow for the following action types: string, mathematical, logical, date
and time and code actions (as extensions of computation actions), as well as
read and write, type conversion, composite and collection actions [7]. Using this
vocabulary, patterns such as Transfomer, Normalizer or Aggregator are built,
which are then interpreted as Java code using Java Message Service (JMS).

Using the connector metamodel and code generation techniques, it is possible
to exchange the underlying runtime environment without any manual interven-
tion, for example, instead of JMS gateways and Java transformation logic, Web
service (WSDL) gateway, BPEL orchestration code and XSLT transformations
for the SOAP messages can be generated.

8 Conclusion

The project research results have been prototypically realized as the BIZYCLE
Model-Based Integration Framework (MBIF). It is based on the presented meta-
models to support different abstraction levels that are part of the BIZYCLE
integration process. Beside the modeling platform, which guides a developer
through the integration process steps, MBIF consists of two other main com-
ponents: BIZYCLE Repository (offers all needed persistence services, version
and consistency management) and BIZYCLE Runtime Environment (where the
generated business connectors are deployed and executable models interpreted).

Based on the practical experience and feedback from our industrial part-
ners, several benefits can be already identified. An important aspect is a degree
of automation, achieved through code generation, systematic conflict analysis
process and automated technical model extraction. Reuse is supported at the
model-level, as interface descriptions, transformation rules and semantic anno-
tations can be shared between multiple projects via BIZYCLE Repository. The
evolution is supported at the model level, and code generation methods enable
smooth transitions. Metamodeling enables very fast tool prototyping. However,
metamodels also improve understanding of the problem domain. One of the ma-
jor advantages of the proposed solution are multiple abstraction levels, such as



CIM, PSM, PIM and code, which enable business architects not to start at the
data model and/or code level right away, as is usual in today’s practice. The
essential benefit offered by the multi-level modeling environment is based on the
capability of performing (to a high degree) automated model transformations,
abstracting and refining over the given level hierarchy.

References

1. ATL: Atlas Transformation Language User Manual. http://www.eclipse.org/m2m/
atl/doc/ATL User Manual[v0.7].pdf, 2006.

2. Eclipse modeling framework. http://www.eclipse.org/modeling/emf/, 2008.
3. H. Agt, J. Widiker, G. Bauhoff, N. Milanovic, and R. Kutsche. Model-based Se-

mantic Conflict Analysis for Software- and Data-integration Scenarios. Technical
Report http://cis.cs.tu-berlin.de/Forschung/Projekte/bizycle/semca.pdf, 2008.

4. N. Boudjlida and H. Panetto. Annotation of enterprise models for interoperability
purposes. In Proceedings of the IWAISE 2008, 2008.

5. M. D. D. Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. AMW: a generic
model weaver. In Proceedings of IDM05, 2005.

6. T. Hildenbrand and R. Gitzel. A Taxonomy of Metamodel Hierarchies. University
of Mannheim, 2005.

7. P. Hoffmann. Design of a model-based message transformation language. Diploma
thesis, TU Berlin, 2008.

8. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, 2003.

9. InterSystems. Ensemble data transformation language. http://www.intersystems.
com/ensemble/docs/4/PDFS/DataTransformationLanguage.pdf, 2006.

10. A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Goranov.
Semantic annotation, indexing, and retrieval. In International Semantic Web Con-
ference, 2003.

11. T. Kühne. Matters of (meta-)modeling. Software and System Modeling, 5(4), 2006.
12. R. Kutsche and N. Milanovic. (Meta-)Models, Tools and Infrastructures for Busi-

ness Application Integration. In UNISCON 2008. Springer Verlag, 2008.
13. R. Kutsche, N. Milanovic, G. Bauhoff, T. Baum, M. Cartsburg, D. Kumpe, and

J. Widiker. BIZYCLE: Model-based Interoperability Platform for Software and
Data Integration. In Proceedings of the MDTPI at ECMDA, 2008.

14. A. Leicher. Analysis of Compositional Conflicts in Component-Based Systems.
PhD Dissertation, TU Berlin, September 2005.

15. N. Mehta, N. Medvidovic, and S. Phadke. Towards a Taxonomy of Software Con-
nectors. In Proceedings of the 22nd ICSE, 2000.

16. N. Milanovic. Contract-based Web Service Composition. HU Berlin, 2006.
17. N. Milanovic, R. Kutsche, T. Baum, M. Cartsburg, H. Elmasgunes, M. Pohl, and

J. Widiker. Model & Metamodel, Metadata and Document Repository for Software
and Data Integration. In Proceedings of the ACM/IEEE MODELS, 2008.

18. E. Pulier and H. Taylor. Understanding Enterprise SOA. Manning, 2006.
19. E. Rahm and P. Bernstein. A survey of approaches to automatic schema matching.

VLDB Journal, 10(4):334–350, Jan 2001.
20. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,

and S. Hübner. Ontology-based integration of information - a survey of existing
approaches. In Proceedings of the IJCAI-01 Workshop: Ontologies and Information
Sharing, pages 108–117, 2001.


