
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Metamodels and Transformations for Software
and Data Integration

Henning Agt, Gregor Bauhoff, Daniel Kumpe, Ralf Kutsche,
Nikola Milanovic, Michael Shtelma, Jürgen Widiker

Technische Universität Berlin
Fakultät IV (Elektrotechnik und Informatik)

Fachgebiet Datenbanksysteme und Informationsmanagement
Einsteinufer. 17
D-10587 Berlin

{hagt,gbauhoff,dkumpe, rkutsche,nmilanov,mshtelma,jwidiker}
@cs.tu-berlin.de

Homepage: http://www.dima.tu-berlin.de

Bericht-Nr. 2010-02
ISSN 1436-9915

Metamodels and Transformations for Software

and Data Integration

Henning Agt, Gregor Bauhoff, Daniel Kumpe, Ralf Kutsche,
Nikola Milanovic, Michael Shtelma, Jürgen Widiker

Technische Universität Berlin
Fakultät IV (Elektrotechnik und Informatik)

Fachgebiet Datenbanksysteme und Informationsmanagement
Einsteinufer. 17
D-10587 Berlin

{hagt,gbauhoff,dkumpe, rkutsche,nmilanov,mshtelma,jwidiker}
@cs.tu-berlin.de

Homepage: http://www.dima.tu-berlin.de

March 19, 2010

Abstract

Metamodels define a foundation for describing software system inter-
faces which can be used during software or data integration processes. The
report is part of the BIZYCLE project, which examines applicability of
model-based methods, technologies and tools to the large-scale industrial
software and data integration scenarios.

The developed metamodels are thus part of the overall BIZYCLE pro-
cess, comprising of semantic, structural, communication, behavior and
property analysis, aiming at facilitating and improving standard integra-
tion practice. Therefore, the project framework will be briefly introduced
first, followed by the detailed metamodel and transformation description
as well as motivation/illustration scenarios.

1

Contents

1 Introduction into BIZYCLE 5

2 Computation Independent Metamodel 7
2.1 Abstract Syntax . 7
2.2 Views . 9
2.3 Constraints . 10
2.4 CIM Example . 12

3 Platform Specific Metamodels 15
3.1 SAP R/3 . 18

3.1.1 SAP R/3 Core Package 19
3.1.2 SAP R/3 Communication Package 20
3.1.3 SAP R/3 Structure Package 21
3.1.4 SAP R/3 Constraints . 22
3.1.5 SAP R/3 Model Example 24

3.2 Relational Database Systems . 24
3.2.1 Relational Database Core Package 24
3.2.2 Relational Database Communication Package 26
3.2.3 Relational Database Structure Package 27
3.2.4 Relational Database Constraints 27
3.2.5 Relational Database Model Example 28

3.3 Java 2 Platform, Enterprise Edition (J2EE) 30
3.3.1 J2EE Components Core Package 31
3.3.2 J2EE Components Communication Package 31
3.3.3 J2EE Components Structure Package 32
3.3.4 J2EE Components Constraints 33
3.3.5 J2EE Components Model Example 33

3.4 Web Services . 35
3.4.1 Web Services Core Package 35
3.4.2 Web Services Communication Package 35
3.4.3 Web Services Structure Package 37
3.4.4 Web Services Constraints 37
3.4.5 Web Services Model Example 37

3.5 Extensible Markup Language (XML) 39
3.5.1 XML Core Package . 39
3.5.2 XML Communication Package 39
3.5.3 XML Structure Package 40
3.5.4 XML Model Example . 40

3.6 XML Schema Definition (XSD) 40

4 Platform Independent Metamodel 42
4.1 PIMM Core Package . 42
4.2 PIMM Structure Package . 42
4.3 PIMM Communication Package 44

2

5 Semantic Metamodel 46
5.1 Abstract Syntax . 46
5.2 Semantic Metamodel Constraints 46
5.3 Ontology Example . 48

6 Annotation Metamodel 49
6.1 Core Annotation Metamodel . 49
6.2 Data Annotation . 50
6.3 Functional Annotation . 51
6.4 Value Annotation . 53
6.5 Annotation Metamodel Constraints 53
6.6 Annotation Examples . 56

7 Property Metamodel 58
7.1 NFP Taxonomy . 58
7.2 Non-functional Property Metamodel 60

8 Connector Metamodel 64
8.1 Connector Package . 64
8.2 The Expression Metamodel . 65
8.3 The Structure packages: structure and message 66
8.4 Concrete Syntax . 67
8.5 Example Scenario . 68

9 Model Transformation 71
9.1 Core Package Transformations 72

9.1.1 SAP R/3 . 72
9.1.2 Relational Database Systems 73
9.1.3 Java 2 Platform, Enterprise Edition(J2EE) 74
9.1.4 Web Services . 74
9.1.5 Extensible Markup Language (XML) 75

9.2 Structure Package Transformations 75
9.2.1 SAP R/3 . 75
9.2.2 Relational Database Systems 75
9.2.3 Java 2 Platform, Enterprise Edition(J2EE) 75
9.2.4 Web Services . 75
9.2.5 Extensible Markup Language (XML) 76
9.2.6 XSD Lite . 76

9.3 Communication Package Transformation 76
9.3.1 SAP R/3 . 76
9.3.2 Relational Database Systems 77
9.3.3 Java 2 Platform, Enterprise Edition(J2EE) 77
9.3.4 Web Services . 78
9.3.5 Extensible Markup Language (XML) 78

9.4 Semantic Package Transformations 78
9.4.1 SAP R/3 . 78

3

9.4.2 Relational Database Systems 79
9.4.3 Java 2 Platform, Enterprise Edition(J2EE) 79
9.4.4 Web Services . 79
9.4.5 XSD Lite . 79

9.5 Transformation Examples . 79
9.5.1 SAP R/3 . 79
9.5.2 Relational Database Systems 79
9.5.3 Java 2 Platform, Enterprise Edition(J2EE) 79
9.5.4 Web Services . 79
9.5.5 Extensible Markup Language (XML) 80

10 Summary 83

4

1 Introduction into BIZYCLE

This report documents part of the BIZYCLE interoperability platform, a joint
industry/academy R&D effort to investigate in large-scale the potential of model-
based software and data integration methodologies, tool support and practical
applicability for different industrial domains. Already published specific details
about this platform can be found in [14, 15, 17, 4, 5, 16, 20]. The consortium
consists of six industrial partners and academia and is part of the program of
the German government, the Berlin-Brandenburg Regional Business Initiative
BIZYCLE (www.bizycle.de). The long-term goal is to create a model-based
tool generation and interoperability platform, in order to allow for improved
and partially automated processes in software component and data integration.
These integration tasks are performed by experienced software engineers and
application experts, manually programming the connectors i.e. the glue among
software components or (sub)systems. This requires domain-specific as well as
integration requirements’ analysis skills. It is a very expensive procedure, es-
timated between 50 and 80 per cent of the overall IT investments (see e.g.,
[18]). In order to reduce this cost factor, the BIZYCLE initiative develops a
methodology, tools and metatools for semi-automated integration according to
the MDA paradigm.
With Model Driven Architecture (MDA) and Model Driven Development (MDD),
the Object Management Group (OMG) has defined a standard process of mod-
eling software systems by a top-down approach on three different levels of ab-
straction: computation independent (CIM), platform independent (PIM) and
platform specific (PSM). BIZYCLE takes advantage of this approach and sup-
ports all three model levels (CIM, PIM, PSM) for the purpose of developing a
process for integration of software artifacts, components, systems or data (here-
inafter referred to as artifacts).
Integration with BIZYCLE starts at the CIM level specifying the integration
process and requirements in terms of an integration scenario. Unlike the MDA
approach (CIM to PIM to PSM), the description of software artifacts them-
selves starts at the PSM level. The artifacts are treated as black boxes and only
their interfaces are taken into account. The artifacts are not initially described
at the PIM level because they already exist and cannot be modified. Platform
specific descriptions of different artifacts are transformed to the PIM level for
comparison and composition conflict analysis. BIZYCLE offers a set of meta-
models at each of the MDA levels. Table 1 gives an overview of the BIZYCLE
metamodels.
The Computation Independent Metamodel (CIMM) offers elements for the de-
scription of an integration scenario with its artifacts, processes and abstract
data exchanges.
Various Platform Specific Metamodels (PSMM) are used to describe homoge-
neous platform specific interface families, e.g., SQL database interfaces, Web
Services, SAP R/3 BAPI and IDOC interfaces, XML files, J2EE and .NET
components.
The Platform Independent Metamodel (PIMM) represents the common abstrac-

5

Level Purpose Metamodels Multilevel
Metamodels

Computation independent Business scenario CIMM

Platform independent Conflict analysis PIMM S
M
M
,

A
M
M

Platform specific Technical interfaces PSMMs P
M
M

Table 1: BIZYCLE metamodel overview

tion basis for interface description of the integration artifacts. Model instances
of that metamodel are created using model-to-model transformation of PSMs,
currently realized with ATLAS transformation language (ATL)[2].
General properties and attributes of integration artifacts are organized in mul-
tilevel metamodels in order to be able to use them at all three MDA levels.
With the Semantic Metamodel (SMM) it is possible to build an ontology of the
integration domain. The knowledge contained in the ontology is used to declare
the meaning of the artifact’s details at all three MDA levels. For non-functional
properties of the artifacts, such as call order and quality of service, the Property
Metamodel (PMM) is defined.
The multilevel metamodels are linked to the metamodels of the CIM, PIM and
PSM level. Content of the semantic model can be shared between different
levels. The Annotation Metamodel (AMM) realizes the linkage between all
levels of abstraction.
Finally, the Connector Metamodel (CMM) describes integration solution, that
is, the component that mediates between system interfaces that are to be inte-
grated. The CMM is logically placed at the PIM level, and is used to generate
connector code.

6

2 Computation Independent Metamodel

The BIZYCLE integration process captures early stages of an integration sce-
nario at the Computation Independent Model (CIM) level. It describes scenario
requirements with an abstract business process and data flow model, regardless
of the technical details of the underlying systems. In the following sections we
describe the Computation Independent Metamodel (CIMM) in terms of UML
class diagrams as well as views that are defined to show relevant aspects of the
models. Constraints on the metaclasses and associations are given and examples
are presented.

2.1 Abstract Syntax

The Computation Independent Metamodel describes software integration sce-
narios from an abstract business perspective. The main purpose of modeling a
scenario at CIM level is to create a comprehension model for people involved
in the integration project and to define integration requirements that are used
in the analysis of interface conflicts and code generation. The CIMM provides
means to name software and data-related artifacts that are involved in the in-
tegration, to model the process of the integration in terms of activities and
transitions that shall be performed by the artifacts and structural and data
exchange aspects, regardless of any technical system’s details.

+name : String

BusinessComponent BusinessConnector

+name : String

IntegrationScenario

+name : String

ActivityNode

+name : String

ActivityEdge

in +targetNode 1+incomingEdge0..*

out+outgoingEdge0..* +sourceNode 1

connects

+component2..* +connector0..*

includes

+components

1..*

+scenario

1

includedEdges

+edge0..*

+component 1

includedNodes

+node 1..*

+component1

Figure 1: CIMM – Basic metaclasses for artifact and process modeling

Figure 1 illustrates the main CIMM metaclasses that are used for artifact and
process modeling. IntegrationScenario names an integration project or part
of it and is used as root model element container because of the implemen-
tation with Eclipse Modeling Framework’s Ecore that demands containment
hierarchies in tree-based editors. A BusinessComponent represents software or
data artifacts, that are involved in an integration project (e. g., a relational
database). It does not necessarily have to be a concrete technical interface. For
example, it can represent a customer relationship management system consist-
ing of a MySQL database and a Web Service that can be accessed separately.
A special business component is the BusinessConnector, that stands for the
interconnection between different systems. It handles interoperability of the ar-
tifacts, that cannot be performed by themselves. A business connector connects

7

two or more business components. The abstract metaclasses ActivityNode and
ActivityEdge are used to express data and control flow of the integration sce-
nario. Nodes are connected through incoming and outgoing edges. Fork and
join is represented with multiple outgoing edges and multiple incoming edges
respectively. A single edge must be connected with exactly one source and one
target node.
The CIMM defines several types of activities that can be performed by a business
component and business connector (Figure 2). ControlNodes determine the
beginning (InitialNode) and the end (FinalNode) of an integration scenario.
ExportInterface and ImportInterface are used to model component interac-
tion by data transfer or functional coupling. Using InternalComponentAction

it is possible to express activities that are not relevant to data flow but are
helpful for understanding the overall scenario context.
The metamodel also defines the metaclass BusinessFunction that represents
functionality of the integrated artifacts. In the scope of an integration sce-
nario it processes incoming data or performs a task required by other artifacts.
Business functions can only be used inside of business components. They can
be semantically annotated (see Section 6) and further described with text (at-
tribute description).
ConnectorFunctions are part of business connectors. A business architect uses
them to predefine connector functionality, in case he has prior knowledge of,
for example, data transformation requirements. The seven connector function
types shown in Figure 2 are abstracted from the set of Enterprise Application
Integration (EAI) patterns [11]. They represent control (e. g., Timer) or conflict
resolution functions (e. g. Transformer, Router or Aggregator). Semantic
annotation is inherited from business functions.

InternalComponentAction

ConnectorFunction

BusinessInterface

+description : String

BusinessFunction

ImportInterface ExportInterface

ControlNode

+name : String

ActivityNode

Transformer Aggregator

InitialNode FinalNode

EnricherSplitterRouter TimerFilter

Figure 2: CIMM - Activities of business components

Two different kinds of edges can connect activities of the integration process

8

(see Figure 3). The ControlFlow is used to express transition from one activity
to another inside of business components. The Connection models data and
control flow between different business components or connectors. It connects
export interfaces, import interfaces and connector functions and is responsible
for transport of BusinessObjects.

+name : String

BusinessComponentBusinessConnector

+name : String

ActivityEdge

ControlFlow

Connection

includedEdges

+edge

0..*

+component

1

Figure 3: CIMM - Activity edges

Finally the CIMM defines the BusinessObject class to describe data exchanged
by the artifacts independent of any data type of the underlying interfaces. Fig-
ure 4 shows all relations of the business object to other metaclasses of the CIMM.
A connection transports at least one business object and a business object can
be transported at several locations of the integration scenario. They are pro-
duced or consumed by business functions and can be hierarchically structured.
Business objects can also be semantically annotated (see Section 6).

+name : String

BusinessObject

+name : String

IntegrationScenario

+description : String

BusinessFunction Connection
input

+inputBO 0..*

+consumerFunction0..*

transports

+businessObject1..*

+connection

0..*

output

+outputBO 0..*

+producerFunction0..*

includes

+businessObject 1..*

+scenario

1 consistsOf

+part

0..*

+whole

0..1

Figure 4: CIMM - Business object

2.2 Views

The CIMM allows to model various aspects of an integration scenario, e. g.,
the flow and data-oriented aspects. With regard to the usability of a modeling
module of the BIZYCLE model-based integration framework (MBIF), an inte-
gration scenario should not be presented on the whole to the user. We identified
five potential graphical views, which are described in the following. The con-

9

crete graphical syntax of the CIM views is realized with the Graphical Modeling
Framework (GMF) of Eclipse. Table 2 gives an overview of the proposed views.

View Purpose

Flow View Flow of the integration scenario
Object View Hierarchical structure of the business objects
Connection View Connectivity and data transport
Function View Business function dependencies
Semantic View Semantic annotation of the scenario

Table 2: Computation Independent Model Views

Integration scenario modeling starts with the Flow View that includes the com-
plete secnario process. The visualization is similar to the UML activity diagram.
It visualizes instantiated BusinessComponents as swimlanes, ActivityNodes
with different shapes being part of the components and ControlFlow as ar-
rows between nodes inside the swimlanes as well as Connections as arrows
between BusinessInterfaces of different components. The view also shows
BusinessConnector and included ConnectorFunctions.
The Object View is responsible for hierarchical modeling of BusinessObjects
refinements. Therefore only instances of this metaclass and their consistsOf-
relations are shown.
The Connection View hides all internal activities of components and shows only
data transport characteristics. That includes BusinessComponents with their
BusinessInterfaces and Connections and additionally the root Business-

Objects, which are exchanged among them. BusinessObjects are associated
to Connections that transport them.
The Function View shows BusinessFunctions and sub-classes including Conne-
ctorFunctions as well as the BusinessObjects, that are input and output of
functions. The view shows relevant business data flow describing how Business-

Objects are being processed and transformed into each other.
The Semantic View is used to semantically describe integration scenarios. Ad-
ditional semantic knowledge is added in terms of semantic annotations to anno-
tatable metaclasses (BusinessObject and BusinessFunction). Both business
objects and functions can be semantically enriched at this level. The view is
implemented as Eclipse Property View in which business objects and functions
can be linked to domain objects and functions of the semantic metamodel (see
section 5). Examples of the CIM views are presented in section 2.4.

2.3 Constraints

To ensure valid usage of the Computation Independent Metamodel several OCL
constraints have been added to metamodel.

• Integration scenario cannot have more than one initial node.

10

context IntegrationScenario inv:

self.components.node->select(n |

n.oclIsTypeOf(InitialNode))->size() = 1

• Integration scenario cannot have more than one final node.

context IntegrationScenario inv:

self.components.node->select(n |

n.oclIsTypeOf(FinalNode))->size() = 1

• Business components, business connectors and business objects must have
a unique name within the integration scenario.

context IntegrationScenario inv:

self.components->isUnique(name)

context IntegrationScenario inv:

self.businessObject->isUnique(name)

• Business connector may only contain connector functions and internal
component actions.

context BusinessConnector inv:

self.node->forAll(n | n.oclIsKindOf(ConnectorFunction) or

n.oclIsKindOf(InternalComponentAction))

• Business component cannot contain connector functions.

context BusinessComponent inv:

self.oclIsTypeOf(BusinessComponent) implies self.node->

select(n | n.oclIsKindOf(ConnectorFunction))->isEmpty()

• Activity nodes must have unique names within the business component.

context BusinessComponent inv: self.node->isUnique(name)

• Initial node cannot have any incoming edges.

context InitialNode inv: self.incomingEdge->isEmpty()

• Outgoing edges of an initial node must be of type control flow.

context InitialNode inv:

self.outgoingEdge->forAll(c | c.oclIsTypeOf(ControlFlow))

11

• Final node cannot have any outgoing edges.

context FinalNode inv: self.outgoingEdge->isEmpty()

• Incoming edges of a final node must be of type control flow.

context FinalNode inv:

self.incomingEdge->forAll(c | c.oclIsTypeOf(ControlFlow))

• Outgoing edges of export interfaces must be of type connection.

context ExportInterface inv:

self.outgoingEdge->forAll(c | c.oclIsTypeOf(Connection))

• Incoming edges of export interfaces must be of type control flow.

context ExportInterface inv:

self.incomingEdge->forAll(c | c.oclIsTypeOf(ControlFlow))

• Incoming edges of import interfaces must be of type connection.

context ImportInterface inv:

self.incomingEdge->forAll(c | c.oclIsTypeOf(Connection))

• Outgoing edges of import interfaces must be of type control flow.

context ImportInterface inv:

self.outgoingEdge->forAll(c | c.oclIsTypeOf(ControlFlow))

• Activity nodes cannot be connected with themselves.

context ActivityNode inv: self.outgoingEdge->forAll(e :

ActivityEdge | e.targetNode <> self)

2.4 CIM Example

In this section an integration scenario is presented that demonstrates the fea-
tures of the Computation Independent Metamodel and its views. Two systems
are involved in the integration: a Web Shop and an ERP system. The Web
Shop is responsible for taking orders of customers. If a new order is processed,
parts of the order item list shall be transferred to the ERP system for stock
calculations. In Figure 5 the Flow View of the scenario is shown. The Web
Shop and the ERP system are modeled as business components on the left and
right. Functionality of the systems that is relevant to integration is modeled as
business function activity inside the components (Customer Order Processing

12

and Process Stock). The integration flow includes Web Shop export interface
Send Order Data and ERP system import interface Receive Item List. There-
fore, systems must provide read and write access (technical interfaces) for their
data. The scenario also includes a business connector Item Processor that filters
(Order Item Filter) the data exported by the Web Shop. The filter accepts data
from the Web Shop via Connection Transport Order Data and delivers data to
the import interface of the ERP system via Connection Transport Item List.

Figure 5: Example integration scenario - Flow View

The CIM Object View shows business/data objects. Figure 6 illustrates two
business objects and their structure that are used in the example scenario.
Order Data represents the data exported by the Web Shop, while Item List is
the data accepted by the ERP system. The order consists of customer details,
order number and details on the items purchased. The Item List is composed
of identifier and item quantity.

Figure 6: Example integration scenario - Object View

After business objects have been defined, top-level objects are associated to
connections in the Connection View (Figure 7). OrderData is transported by
the connection between the export interface and the filter and ItemList is trans-
ported by the second connection. If a new business object is added in the object

13

view it appears in the connection and function views.

Figure 7: Example integration scenario - Connection View

Business function dependencies are defined in Function View of the CIM (Fig-
ure 8a) in form of the object data flow. Input and output links are created
between business functions and objects to determine which data is produced or
consumed by which functionality. In contrast to the Connection View in which
transport paths are modeled, the Function View specifies sources and sinks of
business objects. Figure 8b shows the whole computation independent model of
the example integration scenario as a tree editor implemented with the Eclipse
Modeling Framework. An example of the Semantic View is given in Section 6.

(a) (b)

Figure 8: Example integration scenario - Function View and Model tree

14

3 Platform Specific Metamodels

Platform specific metamodels (PSMM) describe software system interfaces on a
technical level of abstraction. Currently we support relational database systems,
J2EE applications, SAP R/3 ERP systems, Web Services and XML structured
flat files. We further plan to support .NET applications in the near future.
System interfaces separate internal methods from communication methods ex-
posed to external systems, thus encapsulating shared business logic. Communi-
cation with external systems can be carried out in different ways: SAP R/3 sys-
tems provide remote accessible methods (BAPIs) and predefined structured files
(IDOCs), J2EE applications have remote accessible methods (EJBs). Many sys-
tems provide direct access to their backend datastore (e.g., relational database)
database, which is used as internal storage. If systems have neither remote ac-
cessible functions, nor accessible datastore, they often perform data exchange
via flat files, for example XML- or CSV-structured files. Another way for data
exchange within the Microsoft Office Applications is the Object Linking and
Embedding (OLE) technology. The OLE technology is currently not translated
to a PSMM.
The PSMMs represent the abstract syntax of a domain specific language (DSL)
family for describing technical aspects of system interfaces, expressed in terms of
Ecore models. The abstract syntax is supplemented with additional constraints
and multiple concrete syntaxes. Constraints are defined on metaclasses and
associations.
All metamodels are structured into the following packages: platform specific in-
formation (core), structure (interface static signature), interface behavior, non-
functional properties and communication protocols.
The core package describes general platform specific aspects of an interface
family under study, such as the interface type, remote methods and parameters.
It provides the basic structure which can be instantiated, complemented and
refined by other packages.
The structure package provides information about data structure and types
supported by the modeled interfaces and their parameters. It further refines
properties of parameters specified in the core package. Most systems distin-
guish between simple and complex types. Simple types have no further internal
structure in contrast to complex types, which allow record-, message- or object-
like structures, depending on particular realization.
Apart from simple or complex types, parameters can also have value ranges,
which are often implemented as key tables. Parameters which reference the key
table can only have values which are defined within the table. In PSMs the value
range is modeled using ValueRange and Entry (Figure 9). With the ValueRange
element, it is possible to create a table entry with key and its description. One
can either model only keys (e.g., values of NORTH, SOUTH, EAST, and WEST
in Figure 10) or keys with descriptions (e.g., document type: WA = Goods Issue,
WE = Goods Receipt, WL = Goods Issue/Delivery in Figure 10). The element
Entry inherits from the abstract concept AnnotatableValue.
The communication package describes information required to establish phys-

15

+lenght : Integer [0..1]
+decimal : Integer [0..1]

Parameter

+description : String

AnnotatableValue

+name : String

ValueRange

+key : String

Entry

StructRoot

0..*

1..*

0..1

Figure 9: Value Range Definition

Description: Goods Issue/Delivery

Description: Goods Receipt

Description: Goods Issue

} Keys

}
Figure 10: Value Range Example

ical connection with the system under study, such as access-parameter, transport
layer, character set and encoding.
The property package describes non functional properties associated to or
required by the interface under study, such as performance, authorization, secu-
rity and logging. Further information can be seen in chapter 7. The behavior
package describes detailed characteristics of interfaces, methods, objects and
parameter. The information is modeled via OCL constraints.
The AnnotatableElement, AnnotatableFunction and AnnotatableValue (Fig-
ure 11) mark model elements within a PSMM. All instances of elements which
inherits from these abstract classes can be marked with concepts and instances
of concepts from an ontology (see chapters 5 and 6).

+description : String

AnnotatableElement

+description : String

AnotatableFunction

+description : String

AnnotatableValue

Figure 11: Annotatable Model Elements

The purpose of the PSMMs can be summarized as follows:

16

• Description of software system interfaces at technical level, including in-
terface static signature (types), interface behavior, its communication pro-
tocols and non-functional properties

• Modeling of system interfaces using EMF editors, as well as automatic
model extraction

• Interface documentation

• Client code generation

• Basis for model transformation to PIMM for the purpose of facilitating
conflict-analysis process

Ecore serves as a metamodel for the PSMMs. Consequently the PSMMs are
at the M2-level of the linear MOF hierarchy. The elements of the PSMMs are
linguistic instances of the Ecore metamodel (see [13]). In other words, PSMMs
conform to the Ecore metamodel. The most important concepts of Ecore that
are used within the PSMMs, are EClass, EPackage, EReference, EAttribute, and
EDataType. With these elements it is possible to model structural metamodels.
PSMMs define a domain specific language (DSL) for description of software
system interfaces, specifying the abstract DSL syntax. Interface models at the
MOF M1-level conform to PSMMs at the MOF M2-level. PSMM elements
thus build the vocabulary for interface descriptions. The system under study
is provided at the MOF M0-level (e.g., an SAP R/3 instance). PSMMs are
constructed over a classification abstraction of the existing system interfaces.
An overview of this hierarchy is given in Figure 12.

MOF-Level 3

MOF-Level 2

MOF-Level 1

MOF-Level 0
System Interface

PSMM

ECORE

PSM

<conformsTo>

<representedBy>

<conformsTo>

<conformsTo>

Figure 12: MOF-Level

A survey of different metamodel layers is given in [10]. Every PSMM is hi-
erarchic and tree-based. This is necessary for the development of tree-based
editors, which are implemented using Eclipse Modeling Framework (EMF) [8].

17

The following prerequisites and constraints have been observed, related to the
use of EMF:

• The name of modeled elements must consist of letters, digits and under-
scores only

• The name must begin with a character.

• No multiple inheritance is allowed

• Names of all EClasses must be unique

• Attribute names must be unique within inheritance relationships.

• Names must not match with Java keywords.

• Names must not begin with the name of a Package.

The EMF validation framework enables to check models against their meta-
model. The EMF tree-based editors support cardinality constraints check by
default. For example, if the maximal number of child elements is reached, it
is not possible to create more. Logical failures have to be catched with OCL
constraint checks. The constraints are formulated via annotations, directly in
the metamodels in the context of an EClass. An OCL console helps to develop
the constraints before putting them in the metamodels. The OCL console al-
lows to test each constraint with direct response from the interpreter and useful
additional features such as code-completion. The validation of a PSM can be
executed within the editor.
In the following we describe metamodels that were developed to support the
following platforms: SAP R/3 ERP systems, relational databases, J2EE appli-
cations/components, Web services and XML flat files.

3.1 SAP R/3

SAP R/3 is one of the most widely used enterprise resource planning (ERP)
systems. Most of the medium and major sized enterprises have at least one SAP
R/3 system running. This, together with the fact that all consortial partners
perform SAP integration tasks, influenced our decision to support SAP R/3
directly within a separate metamodel. Furthermore, its platform specific details
cannot be easily aligned with other modeled platforms.
This metamodel, as well as other PSMMs, does not represent one-to-one re-
verse engineered image of an R/3 system – this is impractical and unnecessary.
Instead, R/3 ERP system is treated as a black box and only features and de-
tails relevant for its integration are modeled. The platform specific metamodel
elements consist mainly of classes referring to the remote accessible methods,
so-called Business Application Programming Interfaces (BAPI) and Interme-
diate Documents (IDOC), as well as their types and communication channels
supported.

18

IDOCs are structured files in ASCII text format. They are not self-describing,
so the schema of an IDOC file is defined within an IDOC Type located in the
SAP System. IDOC is a file-based communication concept since SAP release
2.2, which was long before remote functions (such as BAPIs) were introduced.
It is based on business documents, which are exchanged in electronic way. The
original idea was to avoid media disruption. The IDOCType element within
the metamodel consists of a hierarchic tree with Segments and Fields inside
the Segments. Each line of an IDOC file consists of one Segment with its
identification number and Fields with concrete data afterwards.
BAPIs are standardized and remote accessible methods associated to SAP busi-
ness objects. They are compliant with specifications of the Open Applications
Group (OAG) and the Common Object Request Broker Architecture (CORBA)
of the Object Management Group (OMG). Furthermore BAPIs are remote ac-
cessible functions which have input and output parameters. There are three dif-
ferent parameter types: structured (StructType), table (TableType) and field
types (FieldType). StructTypes and TableTypes can consist of FieldTypes.
FieldTypes are atomic and have no internal structure. The SAP models are
automatically instantiated using an extractor component by querying the SAP
R/3 Business Object Repository (BOR) service. As it is not possible to get the
related type description, every parameter has a containment relation to its own
type. Import parameters can be further marked as mandatory.
BAPIs can be instance creating (e.g., Create or CreateFromData), which means
that new data instances are added to the system. If a BAPI retrieves infor-
mation about a specific data instance, it is instance dependent (e.g., SalesOr-
der.GetDetail).
Standard SAP R/3 instance has several hundred BAPIs and IDOCs available. In
the metamodel they are sorted into business components (BusinessComponent)
and business objects (BusinessObject) (see Table 3 for examples). Each BAPI
must have at least one import and export parameter. Every BAPI reports
exception and success information through the Return parameter. Detailed
information are accessible using BapiService.MessageGetDetail() and BapiSer-
vice.ApplicationLogGetDetail() functions.

3.1.1 SAP R/3 Core Package

The core SAP R/3 package is given in Figure 13. The entry point to the
hierarchic model is the element SAP R/3. It represents a concrete SAP R/3
system installation. The SAP R/3 consists of at least one SAP R/3 Inter-
face (SAP R3 Interface), which serves as a container for BAPIs and IDOCs.
The interface concept was adopted from the Java Interface, which declares ex-
isting methods within a class. This element consist of the elements Access,
SAPBusinessComponent and IDOCType.
The PSMmodel can be generated semi-automatically. The whole parameter and
structure part can be build automatically through extraction of needed informa-
tion using the SAP Business Object Repository (BOR). Information about the
structure of BAPIs can be extracted programatically using SAP Java Connector

19

Main Business Components Business Objects
SAP BASIS (Basis Technology) CATimeSheetManager

CATimeSheetRecord
EmployeeCATimeSheet

SAP HR (Human Resources) PTimeOverview
TimeAvailSchedule

SAP FI (Financials) Company (Gesellschaft)
Debtor (Debitor)
Vendor (Lieferant)
Customer (Kunde)
CostCenter(Kostenstelle)

SAP LO (Logistics) Material
MaterialBOM (Materialstückliste)
MaterialGroup (Warengruppe)
ProductCatalog (Produktkatalog)
SalesOrder (Kundenauftrag)
PurchaseOrder (Bestellung)
PurchaseRequisition (Bestellanforderung)
WarehouseStock (Lagerbestand)

Table 3: Example for Business Components and Objects

(JCO) library, and IDOC type definition can be extracted indirectly with the
BAPI IDOCTYPE READ COMPLETE. The BAPIs RFC FUNCTION SEA-
RCH, RFC FUNCTION SEARCH WITHGROUP, RPY BOR TREE INIT and
RPY OBJECTTYPE READ are useful for searching the needed BAPIs or build-
ing a customized BAPI Explorer. The following BAPIs are useful for the in-
formation exchange over IDOCs: IDOC INBOUND SYNCHRONOUS (single
IDoc per call), INBOUND IDOC PROCESS (standard in tRFC, batch of IDocs
allowed/ recommended), IDOC INBOUND SINGLE (single IDoc per call) and
IDOC INBOUND ASYNCHRONOUS (standard in tRFC batch of IDocs al-
lowed/ recommended). Finally, the following BAPI is useful to acquire infor-
mation about the Interfaces: HelpValues.GetList() gets information about the
valid values of parameters.

3.1.2 SAP R/3 Communication Package

The CommunicationChannel and Access elements belong to the package com-
munication, they are linked to SAP R3 Interface. All information about the
physical access is collected within this package, including username, password,
hostname, language, system number, sap client and the communication chan-
nel (CommunicationChannel). The channel can be synchronous (sRFC), asyn-
chronous (aRFC), transactional (tRFC) or queued RFC (qRFC), simple file
transfer or via email. The concrete communication channel depends on the
kind of information exchange. IDOCs are exchanged over file transfer, email
or tRFC, while BAPIs are accessed over sRFC. The concrete communication
channel for IDOCs belongs to the SAP R/3 settings (i.e. file path). In euro-
pean SAP R/3 systems there is usually an ISO-8859-1 character encoding, this
conforms to the SAP code page 1100 for western-european languages.

20

Communication

+charset : charset_type [1] = Unicode
+encoding : encoding_type [1] = UTF8

CommunicationElement

+value : String [1]

AccessElement

ComChannel

+name : String [1]

Access

+name : String [1]
+instance_independent : Boolean [1] = false
+instance_generating : Boolean [1] = false

Method

+name : String [1]
+offset : String [1]
+int_length : String [1]
+pos_in_Segment : String [1]
+ext_length : String [1]
+coded_element : Boolean [1]

Field

Structure

+name : String [1]

SAPType

+name : String [1]
+coded_element : Boolean [1]

Parameter

+name : String [1]

SAPBusinessComponent

+Receiver : String [1]
+Sender : String [1]
+IDOC_Typeinfo : String [1]
+Number : String [1]

ControlRecord

+name : String [1]
+mandatory : Boolean [1]
+length : Integer [1]
-min_Number : Integer [1]
+max_Number : Integer [1]
+released : String

Segment

+description : String

AnnotatableFunction

+mandatory : Boolean [1]

Import

+description : String

AnnotatableElement

+description : String

AnnotatableElement

+name : String [1]

SAPBusinessObject

+name [1]

IDOCType

+name : String [1]

SAP_R3_Interface

+name : String [1]

SAP_R3

DataRecord

BAPI

Export

1

1..* 1..*
6

1

1

1..*

0..*

+parent

0..1

+child

0..*

1..*

1..*

11

1..*

1..*

1

1..*

1..*

1..*

Figure 13: SAP R/3 PSM core package

3.1.3 SAP R/3 Structure Package

The structure package of the SAP R/3 metamodel is given in Figure 15. An
Import and Export parameter can consist of three different types: structured
(StructType), table (TableType) or field types (FieldType). The field type
is atomic, structured and table types consist of at least one field type. Table
and structured types only consist of field types. Field types are Java Connector
(JCO) types, more precisely they are wrapper classes. JCO offers a library for
Java which supports the access to SAP R/3 systems. JCO converts SAP R/3
types to Java types and vice versa.
SAP R/3 differentiates between import, export and table parameters. The direc-
tion of import and export parameter are self-explanatory, but table parameters
can be used in import or export direction, depending on the modeled BAPI.
This means that the platform specialist has to know parameter direction, that
is, wheter a BAPI uses the table parameter for import or export.

21

Communication

+charset : charset_type [1] = Unicode
+encoding : encoding_type [1] = UTF8

CommunicationElement

+value : String [1]

AccessElement

+EMailAdress : String [1]

E_Mail

+name : String [1]

Access

ComChannel

ISOIEC8859

UTF16
UTF32

UTF8

<<enumeration>>

encoding_type

SAP_Client

+Path : String [1]

Filetransfer

+value : String

aRFC

Language

sRFC

SystemNumber

qRFC
Password

HostName

tRFC

UserID

Unicode
ASCII

Latin

<<enumeration>>

charset_type

1
1..* 1..*

6

Figure 14: SAP R/3 PSM communication package

Field types can have a value range, where valid parameter values are prede-
fined within a key table. The value range can be modeled with the elements
ValueRange and Entry and FieldTypes can further reference them.
The SAP PSMM uses type system based on Java (JCO) types. The conversion
schema can be seen in Table 4.

3.1.4 SAP R/3 Constraints

1. The name of each import or export parameter has to be unique within the
same method.
context Method inv:
self.has Param− > forAll(c1, c2|c1 <> c2impliesc1.name <> c2.name)

2. The name of each BAPI and IDOC type has to be unique within the same
Business Object.
context SAPBusinessObject inv:
self.has Method− > forAll(c1, c2|c1 <> c2impliesc1.name <> c2.name)

22

Structure

SimpleType

XSTRING STRING FLOATINT2 TIMEDATEBYTE CHARINT1 NUMBCD INT

+length : Integer [0..1]
+decimal : Integer [0..1]

FieldType

+name : String [1]

ValueRange
+description : String

AnnotatableValue
+name : String [1]

SAPType

+key : String [1]

Entry

StructRoot

StructType

TableType

0..*

0..1

1..*

1..*

1..*

Figure 15: SAP R/3 structure package

SAP ABAP JCO JAVA

ACCP N(6) NUM STRING
CHAR n C(n) CHAR STRING
CLNT C(3) CHAR STRING
CUKY C(5) CHAR STRING
CURR n,m P((n+1)/2)DECIMAL m BCD BigDecimal
DEC n,m P((n+1)/2)DECIMAL m BCD BigDecimal
DATS D(8) DATE Date
FLTP F(8) FLOAT Float
INT1 X(1) BYTE Byte
INT2 X(2) BYTE Byte
INT4 X(4) BYTE Byte
LANG C(1) CHAR STRING
NUMC n N(n) NUM String
PREC X(2) BYTE Byte
QUAN n,m P((n+1)/2)DECIMAL m BCD BigDecimal
RAW n X(n) BYTE Byte
TIMS T(6) TIME Date
UNIT C(n) CHAR STRING
VARC n C(n) CHAR STRING
LRAW X(n) BYTE Byte

Table 4: SAP/JCO/Java type conversion

3. BAPI has the communication channels sRFC, qRFC, aRFC or tRFC.

4. IDOC has the communication channels file or email.

5. Table parameter is either import or export, not both at the same time

23

within the same BAPI.

3.1.5 SAP R/3 Model Example

The BAPI modeled in this example (Figure 16) has a SAP R3 Interface with
the name IDES. The character set is Unicode with UTF-8 encoding, this equates
to SAP code page 6100. The release of the system is 4.6 C. The Communication-
Channel is synchronous RFC (sRFC) and the access parameters for the login
to the SAP system are modeled. The owner of the modeled BAPI Requisition
Items is the BusinessObject Requisition and the BusinessComponent Logistic.
The Export parameter has the FieldType CHAR with the name NUMBER and
the length 10. The Import parameter Requisition Items has a TableType, with
the FieldTypes PREQ NO (CHAR), PREQ ITEM (NUM), DOC TYPE (CHAR),
MATERIAL (CHAR), PUR MAT (CHAR), PLANT (CHAR), QUANTITY (BCD)
and UNIT (CHAR). The import parameter is further mandatory (not shown in
Figure 16).

3.2 Relational Database Systems

Relational Database Systems (RDBS) are often used to persist structured data
within applications. For example, the open source Web shop system XT-
Commerce uses MySQL database to store order, products, customer, transac-
tion, etc. data. The database access is direct access to the data-layer, without
the use of remote functions or wrappers. Therefore, a prerequisite is to write
a query against data model. The query can be written manually, or designed
with the help of a query builder such as ER-Win.
The platform specific metamodel for relational database systems is used to
model data being retrieved or persisted by the relational database engine. There-
fore, parameters and structure of SQL queries are the focus of this metamodel.

3.2.1 Relational Database Core Package

The root element of the PSMM is DBMS, which collects SQL interfaces (Figure
17). The element SQL Interface further aggregates queries within the Query

element. A query can be a stored procedure (StoredProcedure) or standard
SQL query such as Create, Select, Update, Insert or Delete. In order to
abstract from SQL syntax as much as possible, all queries are specialized into
Create, Read, Update or Delete (CRUD). A query consists of parameters which
can have input direction (e.g., parameters of a WHERE clause) or output di-
rection (e.g., results of a SELECT clause).
We support automatic model generation for given prepared SQL statements. A
prepared statement is an ordinary SQL statement, with question marks substi-
tuting (marking) input parameters. A SQL parser converts prepared statements
in conjunction with the access parameters to a model. Parameter type informa-
tion is automatically extracted from the underlying database schema.

24

Figure 16: SAP R/3 model example

25

Communication

+encoding : Encoding [1]
+databaseType : DatabaseType [1]

ComElement

+value : String [1]

AccessElement

+name : String [1]

Access ComChannel

Structure

+name : String [1]

ValueRange StructRoot

+name : String [1]
+isPrimKey : Boolean [1] = false
+encoding : Encoding [1]
+collation : Collation [1]
+type : SimpleType
+lenght : Integer
+number : Boolean [1]

Parameter

+description : String

AnnotatableFunction

+description : String

AnnotatableElement

+statement : String [1]
+name : String [1]

Query

StoredProcedure

+name [1]

SQL_Interface

SQLQuery

+name [1]

DBMS

Update

InputOutput
Create

Delete

Read

1..*
5

0..*
0..1

1

1

0..1

1..*

1..*

0..*

1..*

Figure 17: Relational database PSM core package

3.2.2 Relational Database Communication Package

The Access and CommunicationChannel elements collect information about
the access to a database system. Access elements are user, password, host,
database name and port. CommunicationChannels are Java Database Connec-
tivity (JDBC), Open Database Connectivity (ODBC) or structured files like comma
separated values (csv) or tab delimited (tsv). The encoding of a RDBS is very
important for the transfer of data elements. Within a database, every column
is associated with a character set for the information about the encoding and a
collation. The column inherits the encoding and the collation from the table and
the table again from the database, if the attributes where not overridden. The
collation is important for the comparison and sorting of two text type columns.
For example the string value ”Ü-Ei” will be internally transformed to ”Ue-Ei”,
by the use of the collation latin1 german1 ci during the sorting.

26

Communication

+encoding : Encoding [1]
+databaseType : DatabaseType [1]

ComElement

+value : String [1]

AccessElement

+name : String [1]

Access

latin1

ucs2

ascii

big5

utf8

<<enumeration>>

Encoding

latin1_german1_ci
latin1_german2_ci
latin1_general_ci

<<enumeration>>

Collation

Oracle11g
MySQL50

<<enumeration>>

DatabaseType

ComChannel

-path : String

Flatfile

Password

Database

csv

JDBC

ODBC

tsv

User

Host

Port

1..*5

Figure 18: Relational database PSM communication package

3.2.3 Relational Database Structure Package

Every Parameter has a specific name, which is equal to its name given in the
SQL statement. The default value for the encoding is UTF-8, the encoding
and the collation can be specified for each Parameter. Every Parameter has a
specific length.
The structure part consist of SimpleTypes for the description of Parameters
and ValueRanges with Entries for Parameters. A Query collects the Input

and Output parameter with SimpleTypes. Every Query consists of a prepared
statement as annotation. Every Parameter must appear in this statement. The
PSMM uses JDBC types (Figure 19), and conversion schemas for supported
database engines have to be provided. Exemplary, MySQL conversion rules are
given in Table 5. We additionally support Micorosft SQL Server and Oracle
with type conversion.

3.2.4 Relational Database Constraints

1. The name of each SQL Interface has to be unique.

2. All Queries must have at least one output parameter.

3. The Create, Delete and Update Query must have at least one input pa-
rameter.

4. The parameter statement must be a wellformed SQL-statement.

27

LONGVARBINARY

LONGVARCHAR

ENUMERATION

VARBINARY

TIMESTAMP

VARCHAR

SMALLINT

BOOLEAN

DECIMAL
NUMERIC

INTEGER

DOUBLE

STRUCT

BINARY

TINYINT

ARRAY

FLOAT

BIGINT

CHAR

BLOB

CLOB

DATE

REAL

TIME

SET

BIT

<<enumeration>>

SimpleType

Structure

+description : String

AnnotatableValue

+key : String [1]

Entry

+name : String [1]

ValueRange

StructRoot

0..*

1..*

Figure 19: Relational database PSM structure package

3.2.5 Relational Database Model Example

The following example shows an XT-Commerce web shop system. XT-Commerce
is released under General Public License (GPL). It is coded in PHP in conjunc-
tion with a MySQL database and supports the web based administration of
products, customers, orders, manufacturers etc.
In this example we want to export all orders, total value of each order and to
update the status of an order when it is paid. It is necessary to analyze the
database schema to find the tables with the needed information manually. The
XT-Commerce web shop consists of 124 tables with mostly self describing names.
The tables of interests for our scenario are orders and orders total. The table
orders stores information about the customer, delivery name and address, billing
name and address, payment method, credit card information, currency, shipping
method etc. The table orders total stores different values like tax, shipping cost
and the total value of an order. The total value of an order is needed to check the
incoming payment against this value. The table order status defines the value
range for the parameter order status: ”Pending”, ”Processing” and ”Delivered”.
All payed orders are to be marked with the status ”Processing”, unpayed orders
remain in status ”Pending”. This operation is realized with three SQL queries:

1. The first SQL-statement exports all orders with a given status out of the
XT-Commerce system:

28

MySQL-Type JDBC-Type
BIGINT BIGINT
BIGINT UNSIGNED BIGINT
BINARY BINARY
BIT BIT
BLOB BLOB
BOOL BOOLEAN
CHAR CHAR
DATE DATE
DATETIME LONGVARCHAR
DOUBLE FLOAT
DECIMAL DECIMAL
ENUM LONGVARCHAR
FLOAT FLOAT
INT INTEGER
INT UNSIGNED INTEGER
LONGBLOB BLOB
LONGTEXT VARCHAR
MEDIUMBLOB BLOB
MEDIUMINT INTEGER
MEDIUMINT UNSIGNED INTEGER
MEDIUMTEXT LONGVARCHAR
SET LONGVARCHAR
SMALLINT SMALLINT
SMALLINT UNSIGNED SMALLINT
TEXT LONGVARCHAR
TIME TIME
TIMESTAMP TIMESTAMP
TINYBLOB BLOB
TINYINT TINYINT
TINYINT UNSIGNED TINYINT
TINYTEXT VARCHAR
VARBINARY VARBINARY
VARCHAR VARCHAR
YEAR INTEGER

Table 5: MySQL Conversion Schema

Name: getOrders
SELECT * FROM ORDERS WHERE order status = ?

2. The second SQL-statement exports the total value for a given order:
Name: getOrdersTotalValue
SELECT value FROM orders total WHERE (class = ’ot total’) AND (or-
ders id = ?))

3. The third SQL-statement updates the order status parameter of an order
with a given orders id for received transactions:
Name: UPDATE
orders SET order status = ? WHERE orders id = ?

29

The above SQL statements are prepared statements which have to be modeled
within the PSM (Figure 20). Platform specific types must be converted from
database specific to JDBC types.

Figure 20: Relational database PSM example

3.3 Java 2 Platform, Enterprise Edition (J2EE)

J2EE is a wide-spread middleware and development platform for web and busi-
ness applications. Therefore it is important to provide a PSMM to describe
interfaces of J2EE components. The focus of the proposed metamodel is access
to Enterprise Java Beans (EJB) interfaces. In the current EJB specifications
there are three types of components: session, entity and message-drive beans.
Session beans encapsulate business logic coded in Java. Message beans serves as
entry points for asynchronous communication and computation. Entity beans
encapsulate access to structured persistent data. Remote methods offered by

30

EJB components can be accessed via remote, local or home interfaces. The EJB
components are deployed and executed within application servers, for example
JBoss or Glassfish.

3.3.1 J2EE Components Core Package

The root element of this metamodel is J2EE, which aggregates J2EE Components.
They further collect (EnterpriseJavaBean) elements. Currently only session
beans are supported. They expose J2EE Interfaces which can be remote, local or
home, with associated Input and Output parameters. Input parameter will be
assigned as an array to the Method, Output parameter are the return parameters
of a method.

Structure

+name : String

J2EEType

ComplexType

Communication

CommunicationChannel

+name : String [1]

Access

+sessionType : SessionType [1]
+TransactionType : TransactionType [1]

SessionBean

+name : String [1]
+remoteInterface : String
+InterfaceType : InterfaceType [1]

J2EE_Interface

+description : String

AnnotatableFunction

+description : String

AnnotatableElement

+name : String [1]

EnterpriseJavaBean

+name : String [1]
+Transaction : String

Method

+number : Integer [1]

Parameter

+name : String [1]

J2EE_Component

+name : String [1]

J2EE

RemoteInterface
HomeInterface
LocalInterface

<<enumeration>>

InterfaceType

+name : String [1]

Input

MessageBean

+name : String

Output

EntityBean

Update CreateDelete Read

0..1

0..1

1

1

0..*

0..1

0..* 1

1..*

1..*

1..*

Figure 21: J2EE components PSM core package

3.3.2 J2EE Components Communication Package

The Access and CommunicationChannel elements collect information about the
physical access to a J2EE platform/component. The Access element collects
information about the user name and password, if necessary.
Currently only the RMI-IIOP (Remote Method Invocation over the Internet
Inter-Orb Protocol) communication channel is supported. Information about
the system can be accessed over the Java Naming and Directory Interface
(JNDI Property) using the following elements: Java Naming Factory URL
PKGS, Java Naming Provider URL, Java Naming Factory Initial, JNP Socket
Factory and JNP Timeout.

31

Communication

JavaNamingFactoryURL_PKGS

CommunicationChannel
JavaNamingProviderURL

javaNamingFactoryInitial

JnpSocketFactory

+value : String

AccessElement

+value : String

JNDI_Property

+name : String [1]

Access

JNDI_Context

jnpSotimout

Password

jnpTimout

RMI_IIOP

User

0..1

1

1

2

1..6

Figure 22: J2EE components PSM communication package

3.3.3 J2EE Components Structure Package

A J2EE Method (e.g., remote interface method) can have unlimited Input pa-
rameters, but only one Output parameter. The type of a Parameter can be
CollectionType, ComplexType or SimpleType. A ComplexType can consist of
further ComplexTypes, SimpleTypes, Methods or Collections. SimpleTypes are
native Java types. Within a ComplexType it is important to know the name and
the type of a Parameter. Therefore a ComplexType consists of Fields, storing
the name of a Parameter. The Field is then related to the type of a parameter
(J2EEType). CollectionType could be a list, set, map or a queue. Parameter
and Field of a ComplexType can have ValueRange.

Structure

JavaType

BIGDECIMAL BOOLEAN INTEGERSTRUCTDOUBLE STRINGFLOAT SHORTLONG BYTETIMEDATE

+name : String

J2EEType

+description : String

AnnotatableValue

+name : String

CollectionElement

+name : String

ValueRange

+ordered : Boolean
+name : String

CollectionType

+name : String [1]

Field

+key : String [1]

Entry

StructureRoot

ComplexType

SimpleType

0..*

0..*

1

0..*

1..*
0..1

1..*

0..*

1

Figure 23: J2EE components PSM structure package

32

3.3.4 J2EE Components Constraints

1. The name of each J2EE Interface has to be unique.

2. A method can be either owned by a complex type or a J2EE Interface.

3. A parameter can only have a value range when it has a simple type.

3.3.5 J2EE Components Model Example

The following scenario shows the modeling of a J2EE component (EJB 2.1),
representing part of the wholesaler software system. The interface Checked-
BookEJB delivers information about the availability of books. The interface
provides the following methods:

Method signature Description
CheckedBookInterface
checkBook(String ISBN)

The method checkBook gets a ISBN number
of type String as input and provides an object
of type CheckedBookInterface

Table 6: checkBook

Method signature Description
String getISBN() Provides the ISBN number of the checked

book
Integer getAvailable() Provides a Boolean value to the availability of

the checked book
Boolean getQuantity() Provides the number of available books
Date getDeliverDate() Provides the earliest delivery date

Table 7: CheckedBookInterface

Beside the structural information concerning methods, it is also important to
model information about the application server (in this example JBoss 5.0.0).
The following information are necessary for the client to execute the provided
methods on the application server. With all this information it is possible now
to create the PSM for the scenario (see Figure 24).

Configuration Value
Initial Context Factory org.jnp.interfaces.NamingContextFactory
Provider URL jnp : //wombat− vm− 2.cis.cs.tu− berlin.de
URL PKG Prefixes org.jboss.naming : org.jnp.interfaces
Socket Factory org.jnp.interfaces.T imedSocketFactory

Table 8: JBOSS Configuration

33

Figure 24: J2EE component model example

34

3.4 Web Services

Web Services are an important SOA technology that offers service-based func-
tionality without depending on a special programming language. Thus Web
Services and their clients can be implemented with different languages like
Java, C-Sharp or Ruby and remain compatible. A Web Service interface de-
scription is formally described by the XML-based Web Service Definition Lan-
guage (WSDL), which conforms to the WSDL schema [1]. To process a WSDL-
file inside the MOF-based metamodel hierarchy one has to transform all rele-
vant WSDL information into a M1-level model which conforms to the M2-level
WSDL schema-derived metamodel. The current WSDL metamodel considers
only SOAP version 1.1 as the message protocol and HTTP as the transport
protocol.

3.4.1 Web Services Core Package

The Web Services metamodel (Figure 25) starts with the general ModelRoot
which aggregates one StructureRoot, one CommunicationRoot and varying
ServiceDefinitions.
A ServiceDefinition aggregates different WSDL elements: Services, Bindings,
PortTypes and Messages. A PortType is the abstract description of a set of ex-
posed Operations and its corresponding InputParameters, ExportParameters
and FaultParameters and optional ParameterOrderItem. The three different
parameter types are generalized by an abstract Parameter. Every parameter
has an association to exact one Message, which is itself divided into several
MessageParts. A MessagePart represents a data structure, described by an
XSD schema. For this reason, a practical lite version of the XSD schema is
modeled in the separate XSDLite metamodel (see Chapter 3.6), also used by
XML flat files.
A Service represents a single Web Service and aggregates a Port. A Port holds
the communication address (location) and an association to exact one Binding
but vice versa can be associated to more then one Port. A Binding holds the pro-
tocol information (transport) and data encoding (style). Binding aggregates
further SOAP-specific metaclasses (with prefix SOAP) which add SOAP-specific
details for Operations, Parameters and MessageParts (Figure 26).
All these metaclasses are generalized by NamedElement, which holds the at-
tributes name and a optional documentation.

3.4.2 Web Services Communication Package

The communication package (Figure 25) includes the MessageExchangePattern
and access information covered by SecurityData. Further communication meta-
classes can be aggregated later under the CommunicationRoot metaclass.

35

x
s
d

L
it

e

-u
ri
 :
 S

tr
in

g
 [
1

]
-p

re
fi
x
 :

 S
tr

in
g

 [
0
..

1
]

N
a

m
e

s
p

a
c
e

S
tr

u
c
tu

re
R

o
o

t

E
le

m
e

n
tR

o
o

t
T

y
p

e
R

o
o

t

E
le

m
e

n
t

T
y

p
e

c
o

m
m

u
n

ic
a
ti

o
n

M
e

s
s

a
g

e
E

x
c

h
a
n

g
e

P
a

tt
e

rn

-u
s
e
r

:
S

tr
in

g
 [
1

]
-p

a
s
s
w

o
rd

 :
 S

tr
in

g
 [

0
..

1
]

S
e

c
u

ri
ty

D
a

ta

C
o

m
m

u
n

ic
a

ti
o

n
R

o
o

t R
o

b
u

s
tO

u
tO

n
ly

In
O

p
ti

o
n

a
lO

u
t

O
u

tO
p

ti
o

n
a

lI
n

R
o

b
u

s
tI

n
O

n
ly

O
u

tO
n

ly
In

O
n

ly
In

O
u

t
O

u
tI

n

-n
a

m
e

 :
 S

tr
in

g
 [

1
]

-d
o

c
u

m
e

n
ta

ti
o

n
 :

 S
tr

in
g

 [
0

..
1

]

N
a

m
e

d
E

le
m

e
n

t

A
n

n
o

ta
ta

b
le

F
u

n
c

ti
o

n
A

n
n

o
ta

ta
b

le
E

le
m

e
n

t

-o
rd

e
rI

d
 :

 I
n

te
g

e
r

[0
..

1
]

P
a

ra
m

e
te

rO
rd

e
rI

te
m

-s
ty

le
 :

 S
tr

in
g

 [
1

]
-t

ra
n

s
p

o
rt

 :
 S

tr
in

g
 [

1
]

B
in

d
in

g

W
S

D
L

D
e

fi
n

it
io

n -d
e

s
c
ri
p

ti
o

n
 :

 S
tr

in
g

A
n

n
o

ta
ta

b
le

V
a

lu
e

O
u

tp
u

tP
a

ra
m

e
te

r

-l
o

c
a

ti
o

n
 :

 S
tr

in
g

 [
1

]

P
o

rtS
e

rv
ic

e

In
p

u
tP

a
ra

m
e

te
r

O
p

e
ra

ti
o

n

F
a

u
lt

P
a

ra
m

e
te

r

M
e

s
s

a
g

e
P

a
rt

-k
e

y
 :

 S
tr

in
g

 [
1

]

E
n

tr
y

-n
a

m
e

 :
 S

tr
in

g

V
a

lu
e

R
a

n
g

e

P
a

ra
m

e
te

r

M
o

d
e

lR
o

o
t

P
o

rt
T

y
p

e

M
e

s
s

a
g

e

h
a

s

0
..
*

h
a
s

0
..
1

-s
tr

u
c
tu

re
R

o
o
t

1

h
a
s

0
..

*

h
a

s

0
..

1
h

a
s

0
..
*

h
a

s

0
..
*

h
a

s

0
..

1

h
a

s

0
..

*

h
a
s

0
..

1

h
a
s

0
..

*

0
..

*

h
a

s
0

..
1

h
a

s

0
..

*

h
a

s

0
..

1

b
e

lo
n

g
s
T

o

1

0
..

*

h
a

s

0
..

1

1

h
a

s

0
..

1
0

..
*

h
a

s

0
..

*

h
a

s

0
..

*

h
a

s

0
..

*

1

h
a
s

1
..

*

h
a

s

0
..

*

h
a

s

0
..

*

h
a

s
0

..
1

h
a

s

1
..

*

h
a

s

1
0

..
*

1
..

*

h
a

s

1

0
..

*

h
a
s

1
0

..
*

h
a

s

0
..

*

h
a

s

0
..

*

F
ig
u
re

25
:
W
eb

S
er
v
ic
es

M
et
am

o
d
el

36

-use : String [0..1]
-encodingStyle : String [0..1]
-namespace : String [0..1]

SOAPHeaderFaultBinding

-use : String [0..1]
-encodingStyle : String [0..1]
-namespace : String [0..1]

SOAPParameterBinding

-soapAction : String [0..1]
-style : String [0..1]
-required : Boolean [0..1]

SOAPOperationBinding

-message : String [0..1]

SOAPHeaderBinding

-style : String [1]
-transport : String [1]

Binding

SOAPBodyBinding SOAPFaultBinding

MessagePart

Operation

Parameter

binds -operation

1

-bindsBy

0..*

binds -parameter

1

-bindsBy

0..*

binds0..1

0..*

binds 0..1

0..*

has

1..*

has

1 0..*

has

1..*

Figure 26: SOAP specific excerpt of PSMMWSDL Metamodel

3.4.3 Web Services Structure Package

The WSDL structure package is covered by the XSDLite metamodel which is
described in chapter 3.6.

3.4.4 Web Services Constraints

• exactOneXSDReference: A MessagePart instance must have either a type-
reference or a element-reference (XOR)
context MessagePart: (self.type->sum()+self.element->sum())=1

3.4.5 Web Services Model Example

This example is derived from a WSDL file which describes a Web service from
the event service domain, offering createEvent Web method.

37

Figure 27: Web Services Model Example

38

3.5 Extensible Markup Language (XML)

XML is a widely used standard for platform independent data representation.
In the context of MOF the XML metamodel which includes a metamodel called
XSDLite representing the XSD schema (Chapter 3.6) is at the M2-level. Do-
main specific XSD files are at the M1-level and real XML-data conforming to a
concrete domain specific XSD from are at the M0-level. The XML metamodel
(Figure 28) is divided into two packages: (1) xsdlite covering structural as-
pects of XML-data and (2) communication covering information for accessing
XML data at the M0-level.

communication

-path : String
-fileNamePattern : String

FileAccess

CommunicationRoot

-user : String
-password : String

AccessPattern

-imap : String
-pop3 : String

EmailBoxAccess

SmbFileAccessFtpFileAccess

-uri : String

WebAccess

xsdLite

StructureRoot ModelRoot

has

0..*

1

has

11

has

1 1

Figure 28: XML Metamodel (excerpt)

3.5.1 XML Core Package

The XML metamodel core package is subsumed by the xsdlite metamodel,
described in Section 3.6.

3.5.2 XML Communication Package

The communication package depicted in Figure 28 includes all communication
details concerning the access to XML data which is covered by the abstract
metaclass AccessPattern including the two properties user and password. For
file-based access (FTPFileAccess, SMBFileAccess) the special properties path,
user,password and fileNamePattern can be modeled with FileAccess. Web-
based XML sources can be modeled with WebAccess and email-based XML-
transfer with EmailBoxAccess.

39

3.5.3 XML Structure Package

The structure part can be modeled with the generic XSDLite metamodel (chap-
ter 3.6), a practical (lightweight) representation of the XSD schema.

3.5.4 XML Model Example

Since both XML and Web services metamodels use xsdlite as their structure
package, we do not give XML model example, as it is very similar to Web service
model example given in Figure 27, differing only in the communication part.

3.6 XML Schema Definition (XSD)

The XSDLite metamodel (Figure 29) is a practical (lightweight) representa-
tion of the XSD schema [3]. XSD is a language definition for describing struc-
tural and typing aspects of XML-based data. It replaces the former Document
Type Definition (DTD). The XSDLite metamodel starts with the root element
StructuralRoot, which aggregates one AttributeRoot, one ElementRoot, one
TypeRoot and varying Namespaces. A Namespace represents an element for
naming XSD elements uniquely. The three root metaclasses aggregate Attribute,
Element and Type. The metamodel differ between three kinds of Types: Simple
Types, ComplexTypes and XsdAny. The last is a special XSD construct for un-
typed elements. The SimpleType is divided into four sub metaclasses:

1. XsdBaseType represents original XSD simple types such as string, boolean,
float, double, etc.

2. List represents a list of a concrete SimpleType,

3. Union represents a set of SimpleTypes and

4. DerivedType represents a restricted SimpleType e.g., a string conforming
to a regular expression.

Restrictions are handled by Facets, which generalize all metaclasses in the
facet package. A ComplexType aggregates a Container, which generalize
Sequence, All and Choice. These three sub types have the same semantic
as defined in a XSD schema (M1-level) concerning XML data (M0-level): in
(1) Sequence all aggregated ElementRefs are defined by the minOccurs and
maxOccurs attributes, in (2) Choice only one ElementRef is allowed, if (3)
All, every Element referred by ElementRef must be instantiated. Finally,
Attribute and Element hold the real data, hence these are sub classes from
AnnotatableElement. Type and AnnotatableElement are sub classes from
NamedElement which has a self reference embeddedIn. This optional reference
represents local (embedded) Elements and Types known from XSD. An Element
can only include a Type and vice versa.

40

facets

-value : WhiteSpaceEnum

WhiteSpace
-value : Long
-unbounded : boolean

NumericFacet
preserve

collapse
replace

<<enumeration>>

WhiteSpaceEnum

-values : String [1..*]

Enumeration

FractionDigitsMaxExclusionMinExclusion MaxInclusionMinInclusion

-regex : String

Pattern

MaxLengthMinLength TotalDigitsLength

Facet

StructureRoot

SimpleType

-minOccurs : Integer [1]
-maxOccurs : Integer [1]

Container

AnnotatableElement

-minOccurs : Integer [1]
-maxOccurs : Integer [1]

ElementRef

-baseType : String [1]

XsdBaseType

-description : String

AnnotatableValue

-uri : String [1]
-prefix : String [0..1]

Namespace

-name : String [1]

NamedElement

DerivedType

ComplexType

AttributeRoot

-key : String [1]

Entry

ElementRoot

ValueRange

List

Sequence

TypeRoot

Union

Type

Attribute Element
XsdAny

Choice All

containAttributes
0..* 0..*

has

0..*

has

0..*

has

1

0..*

derived-baseType

1

0..*

hashas

0..1

contain

-parent

0..1

-child 0..*

hashas

0..*

containElements

0..*

has

0..*

1

embeddedIn

0..1

0..*

0..1

belongsTo

1

has

0..*

has

0..1

has

0..*

belongsTo

1

0..*

has

1..*

baseTypes

2..*

0..*

baseType

1

0..*

has

1

1

Figure 29: XSD-Lite Metamodel

41

4 Platform Independent Metamodel

The motivation for introduction of the Platform Independent Metamodel (PIMM)
is to facilitate system interoperability by abstracting all platform specific het-
erogeneous interface details, thus enabling unique integration conflict analysis
method, independent of platform-specific details of target systems. These details
are divided into different parts: structure, semantic, behavior, (non-functional)
properties and communication. This abstraction process is realized by a PSMM-
to-PIMMmodel-to-model transformation realized by ATL [6]. In this way, based
on a PSM, a new PIM will be created, hence for every PSMM there exists a set
of transformation rules which translates PSMM into the common abstraction
layer, the PIMM. As stated in [14] the PIMM eliminates the problems of inte-
grating non-comparable interface descriptions. With the PIMM one is able to
represent different platform-specific interface details on a common basis. Based
on the technical interface descriptions given by PSMs, a PIM represents an ag-
gregated view of all exposed interfaces of a specific real-world system. Interface
details at the PIM level have to be of relevance for the conflict analysis, i.e. a
PIM represents a subset of interface details which is machine processable by the
conflict analysis tool. A PIM consists of transferred/derived information based
on the underlying PSMs.

4.1 PIMM Core Package

The PIMM, like all other BIZYCLE metamodels, follows the EMF containment
tree structure. Consequently, it includes a few ’helper nodes’ with no specific
meaning (e.g. StructureRoot) which only span different subtrees. At the
PIMM-level an Interface represents a single system gateway which is able to
handle data as input and/or output in one single step. Hence PIMM-Interfaces
represent an abstraction for all platform specific operations, methods, functions,
files etc. PIMM differs between two different Interface types according to their
meaning: FunctionInterface and DocumentInterface. The former represents
a call oriented Interface (e.g., a Web method), the latter a data structure based
Interface (e.g., an XML-file). Every Interface has its own parent container, the
system which exposes it. This container is called the IntegratableElement.
Every Interface contains associations to different parts of the PIMM which will
described in the following subsections. See basic PIMMmetaclasses in Figure 30.

4.2 PIMM Structure Package

The structural package (given in Figure 31) includes the common type system
with the abstract super metaclass Type and different sub metaclasses to ex-
press SimpleTypes (String, Number, Boolean) as well as ComplexTypes. The
abstract metaclass TypedElement represents an element with a specific meaning
(semantic) and is able to hold a real value at runtime, e.g., ImportParameter.
A TypedElement has exactly one association to a type (1 cardinality) but vice

42

communication

MessageExchangePattern

+delivery : DeliveryEnum [0..1]

Event

CommunicationElement

+readOnly [0..1]

DataAccess

IDBasedAsynchronCall

CommunicationRoot

SubscribedEvent

atLeastOnce

exactlyOnce
atMostOnce

bestEffort

<<enumeration>>

DeliveryEnum

RobustOutOnly

AccessPattern

AsynchronCall

TimeOutEvent

InOptionalOut OutOptionalInRobustInOnly

SynchronCall

PolledEvent
ImplicitCallExplicitCall

TimeEvent

Delegation

Exception

Callback

OutOnlyInOnly OutInInOut

Call

structure

+optional : Boolean [0..1]
+exclusive : Boolean [0..1]
+name : String [1]

TypedElement

+description : String [0..1]

AnnotatableElement

+description : String [1]
+key : String [1]

AnnotatableValue

DocumentElement

StructureElement

ImportParameterExportParameter

StructureRoot

Parameter

+description : String [0..1]

AnnotatableFunction

+name : String

IntegratableElement

DocumentInterfaceFunctionInterface

+name : String

Interface

IEDocument

ModelRoot

IEModule

include

0..*

hasValues

0..*

deliver

0..*

1

hasParameter

0..*

0..1

offers

0..*

offers

0..*

includeIntegratableElement

0..*

includeCommunicationRoot

0..1

includeStructureRoot

0..1

1

comprises

-part

0..*

-compound 0..1

has

0..*

1..*

Figure 30: Platform independent metamodel overview

43

versa a type can belong to arbitrarily TypedElements (* cardinality), that means
a Type can be ’reused’.
The TypedElement can be Parameter or DocumentElement. The first represents
generic Parameter common in different operational interfaces. The Document-
Parameter represents a data container (document) which wraps structured data
in a single entity, mostly wrapped by a container, e.g. XML-file, or SAP IDOC.
Further sub metaclasses of TypedElement are Field and ListElement. Fields
are used to construct ComplexTypes and ListElement represents the element in
a Collection.
All TypedElements can be semantically annotated, which is realized by a super
metaclass AnnotatableElement.

+name : String [1]

Type

+optional : Boolean [0..1]
+exclusive : Boolean [0..1]
+name : String [1]

TypedElement

+minValue : Integer [0..1]
+maxValue : Integer [0..1]
+decimalPlaces : Integer

Number

+description : String [0..1]

AnnotatableElement

+minCount : Integer [0..1]
+maxCount : Integer [0..1]

AbstractCollection

+minValue : String [0..1]
+maxValue : String [0..1]
+format : String [1]

PointInTime

+length : Integer [0..1]
+charset : String [0..1]

String

+value : String
+id : Integer

EnumerationLiteral

+isInterface : Boolean

ComplexType

+name : String
+isAbstract : Boolean

MethodDocumentElement

StructureElement

ImportParameter ExportParameter

+regex : String [1]

RegexType

StructureRoot

Enumeration

SimpleType

+name : String

Library

OrderedBag

ListElement

OrderedSet

Parameter

MapValue

Boolean

MapKey

Field

Opaque

Map

Bag Set

hasType

10..*

hasListElement1

has

1

constructor

hasField

0..*

has

0..*

0..1

has

0..* 0..1

has
0..*

0..1

has

0..*

extends

0..*

innerLibrary

-children

0..*

-parent

0..1

with

0..*

innerClassses

0..*

has1..*

1

hasValue

1

hasKey

1

Figure 31: PIMM Structure Package

4.3 PIMM Communication Package

The communication package, as part of Figure 30, contains all communication-
related interface properties at the platform independent level.

44

Every interface has its own interaction rules. These can be described by different
communication patterns such as MessageExchangePatterns, different Call-
or Event types. All platform specific details are wrapped by an Application
Endpoint. In contrast to that, platform independent communication details are
essential to interact with every interface in the correct, conflict-free way. During
communication conflict analysis incompatible call mechanisms are detected and
fixed (as far as possible automatically).

45

5 Semantic Metamodel

In this section we describe the semantic metamodel (SMM) that is used to
express ontologies containing domain knowledge of integration projects. The
knowledge is used to declare the meaning of model elements on all abstraction
levels. We first present abstract syntax and constraints and then give an example
that shows the concrete graphical syntax of the metamodel.

5.1 Abstract Syntax

The semantic metamodel (SMM) defines an abstract DSL syntax for ontology
definition. The work with our industrial partners showed that controlled vo-
cabularies, taxonomies or lightweight ontologies are sufficient to semantically
describe their models, rather than using full features of ontology languages.
Common ontology editors (e.g., Protege) have low industry penetration be-
cause of complexity. In many companies ontologies are not used at all. For
those reasons we did not directly use existing RDF-S or OWL metamodels to
represent ontologies, but rather developed an additional metamodel and offered
an Eclipse GMF-based editor as concrete graphical syntax.
Figure 32 shows the metaclasses of the SMM. The Ontology contains Domain
elements that allow containment and grouping of concepts. Semantic concepts
can be DomainObject (knowledge representation of data), and DomainFunction

(representation of functionality). Furthermore a domain can contain Domain-

Value elements (representation of knowledge about concrete values). Domain
values are instances of domain objects, e. g., a domain object Country with
its domain values Germany, USA. Concepts are associated using Predicate

elements. Domain objects and functions are either in the role of a subject
or an object. With this construct it is possible to build semantic statements
(RDF-like triples) consisting of subject, predicate and object (e. g., Customer-
Name IsA Name). The metamodel offers predefined predicates: generalization
(IsA), data processing for functions (Input, Output), containment (Has), data
sets (ListOf) and equivalence (IsEquivalentTo). With CustomPredicate it is
possible to model user-defined predicates. Ontologies modeled with the SMM
may be evaluated to extend the metamodel by often used custom predicates.

5.2 Semantic Metamodel Constraints

Several constraints on the Semantic Metamodel have been defined and imple-
mented in OCL that are described in the following.

• Domain names in ontologies must be unique:

context Ontology inv: self.domains->isUnique(name)

• Semantic concepts in a domain must have unique names.

context Domain inv: self.concept->isUnique(name)

46

+description : String [1]

CustomPredicate

+name : String [1]

SemanticConcept

DefinedPredicate

DomainFunction

DomainObject

+name : String [0..1]

Predicate

+name : String [0..1]

Ontology

+name : String [1]

Domain

+name : String [1]

DomainValue

IsEquivalentTo

Output

ListOf

IsA

Input

Has

+domainValue

0..*

+domain 1

+concept 1..*

+domain1

+predicate 0..*

+domain1
+spredicate 0..*

+subject 1 +object1

+opredicate0..*

+domains

1..*

partOf

+subDomain

0..*

+parentDomain

0..1

+domainObject 1

+domainValue 0..*

Figure 32: Semantic Metamodel (SMM)

• A semantic concept cannot link to itself with a predicate.

context SemanticConcept inv:

self.spredicate->notEmpty() implies self.spredicate.object->

notEmpty() implies self.spredicate.object->excludes(self)

• Predicates of domain objects that are in a role of a subject must link to
domain objects.

context DomainObject inv:

self.spredicate->forAll(sp | sp.object.oclIsTypeOf(DomainObject))

• Input and Output predicates of domain functions must link to domain
objects.

context DomainFunction inv:

self.spredicate->select(oclIsTypeOf(Input))->forAll(sp |

sp.object.oclIsTypeOf(DomainObject))

self.spredicate->select(oclIsTypeOf(Output))->forAll(sp |

sp.object.oclIsTypeOf(DomainObject))

• Has-, IsA- and IsEquivalentTo-predicates of domain functions must link
to domain functions.

context DomainFunction inv:

self.spredicate->select(oclIsTypeOf(Has))->forAll(sp |

sp.object.oclIsTypeOf(DomainFunction))

self.spredicate->select(oclIsTypeOf(IsA))->forAll(sp |

sp.object.oclIsTypeOf(DomainFunction))

self.spredicate->select(oclIsTypeOf(IsEquivalentTo))->

forAll(sp | sp.object.oclIsTypeOf(DomainFunction))

47

• Domain functions cannot be linked with ListOf predicates.

context DomainFunction inv:

self.spredicate->select(oclIsTypeOf(ListOf))->isEmpty()

self.opredicate->select(oclIsTypeOf(ListOf))->isEmpty()

5.3 Ontology Example

In Figure 33 we give an example instance of the semantic metamodel using
our graphical model editor to demonstrate the aforementioned features. The
small ontology is used to semantically describe simple integration scenarios and
systems that relate to the domain order processing. Domain objects of the ontol-
ogy are depicted as blue ellipses, like the central element Order. Predicates are
shown as arrows labeled with type of predicate. For example the Order consists
(has-predicate) of a buying Customer and an ItemList. The ItemList is defined
as a list of Items. The relation between the synonyms Client and Customer is
modeled with the IsEquivalent-predicate. Generalization (IsA) is expressed
between ItemPrice and its specializations ItemNetPrice and ItemGrossPrice.
Functional knowledge is modeled with the domain function GrossPriceCalcula-
tion (red ellipse) that takes ItemNetPrice and TaxRate as input and delivers
an ItemGrossPrice. The correlation between TaxRate and Country is modeled
with a custom predicate dependsOn. The ontology also provides two domain
values Germany and USA that are instances of Country.

Figure 33: Example ontology

48

6 Annotation Metamodel

Semantic annotation is the term originating in the Semantic Web community
that describes associations of ontology elements to service interfaces, documents
and web resources [12, 19, 7]. It enables machine-based processing of these ar-
tifacts. We adopted this paradigm to semantically annotate elements of inte-
gration scenario models at the CIM level and interface description models at
the PSM and PIM level enabling automatic annotation analysis for element
matching. The intermediate annotation metamodel (AMM) was developed that
links the SMM with respective metamodels of our framework, using the model
weaving approach [9].

6.1 Core Annotation Metamodel

The AMM includes a AnnotationModelRoot that contains a least one Annota-
tionElement (Figure 34). It has four specializations: DomainObjectAnnotation
(data-oriented annotation), DomainFunctionAnnotation (function-oriented an-
notation), DomainValueAnnotation (instance annotation) and LogicalOpera-

tor (annotation grouping). Data-oriented annotations are used to describe all
model elements that represent data at a certain level of abstraction. Func-
tional annotations describe the meaning of computational and processing be-
havior. Value annotations describe concrete instances of data representation.
Logical operators (AND, OR, XOR) link two or more annotations for combination.
Each of the annotation types links to at least one respective knowledge defi-
nition metaclass of the semantic metamodel (DomainObject, -Function and

-Value). Besides the core metamodel classes the most important part of the
AMM are the associations to our other metamodels, that are described in the
following.

DomainFunctionAnnotationDomainObjectAnnotation DomainValueAnnotation

AnnotationModelRoot
+name : String [0..1]

AnnotationElement

LogicalOperator

DomainFunction
+name : String [1]

DomainValue
DomainObject

(from SMM)(from SMM)
XORORAND

elements

+elements

1..*

+modelRoot

1

link

+annotationElements

2..*

+operator 1

target

+domainFunction1..*

+annotation0..1

target

+domainObject1..*

+annotation0..1

target

+domainValue1

+annotation0..1

Figure 34: Core elements of the annotation metamodel

49

6.2 Data Annotation

At the most abstract modeling level (CIM), data objects and their structure
are defined using the metaclass BusinessObject of the CIMM. The annota-
tion metaclass of the AMM links it to at least one DomainObject of the SMM
(Figure 35).

+targetFunction : BusinessFunction [0..*]
+sourceFunction : BusinessFunction [0..*]
+connection : Connection [0..*]
+connector : BusinessConnector [0..*]
+name : String

...

BusinessObject

+domainValue : DomainValue [0..*]

DomainObjectDomainObjectAnnotation

(from CIMM)
(from SMM)(from AMM)

source

+cimBusinessObject

0..* +annotation

0..1

target

+domainObject

1..*+annotation

0..1

Figure 35: Semantic data annotation at the CIM level

At the PSM level, data annotations refer to interface model elements that have
data semantics on a certain level of granularity. Each of the platform-specific
metamodels includes the abstract metaclass AnnotatableElement that is linked
with the DomainObjectAnnotation. Each model element that shall be anno-
tated inherits from AnnotatableElement. Figure 36 shows the possible anno-
tations for two of the supported platforms: EJB components running in J2EE
containers and relational database management systems (RDBMS). Enterprise
JavaBeans offer methods, that have Input and Output parameters which can
be annotated. The parameters have atomic simple types (such as floats and
integers) or complex types composed of annotatable Field elements. The meta-
model for RDBMS offers queries that have a set of Parameters, that are either
Input or Output. They represent columns of SQL result sets or parameters of
insert and update statements which are important for annotation.

+domainValue : DomainValue [0..*]

DomainObject

+name : String [1]
+isPrimKey : Boolean [1] = false
+encoding : Encoding [1]
+collation : Collation [1]
+type : SimpleType
+lenght : Integer
+number : Boolean [1]

Parameter

DomainObjectAnnotation

+description : String

AnnotatableElement

+description : String

AnnotatableElement

+number : Integer [1]

Parameter (from PSMMJ2EEEJB)

(from PSMMRELDB)

+name : String [1]

Input

+name : String [1]

Field

+name : String

Output

(from AMM)

(from SMM)

Input

Output

source

+relDbElement

0..*

+annotation 0..1

source
+j2eeElement

0..*

+annotation 0..1 target

+domainObject

1..*

+annotation

0..1

Figure 36: Semantic data annotation at the PSM level – J2EE systems and
RDBMS

The platform specific metamodel for the SAP R/3 systems allows the model-
ing of several data-oriented aspects of the SAP R/3 interfaces. An application
specialist can specify Business API functions (BAPI), that contain input and
output Parameter elements which are typed (SAPType) according to their con-
tent (tables, structures and simple types). SAP R/3 systems also offer document
exchange interfaces (IDOCType) with further sub-structure (Segment and typed

50

Field elements). The link to the annotation allows to declare the meaning of
the interface structure at respective levels of refinement (Figure 37).

+domainValue : DomainValue [0..*]

DomainObjectDomainObjectAnnotation

+description : String

AnnotatableElement

(from PSMMSAPJCO)

+name : String [1]
+length : Integer [1]

...

Segment

+name : String [1]
+offset : String [1]

...

Field

+name : String [1]
...

Parameter

+name : String [1]

SAPType
(from AMM)

+name [1]

IDOCType

(from SMM)
target

+domainObject

1..*+annotation

0..1

source

+sapElement

0..* +annotation

0..1

-has_Bezugstyp1

-in_Param

Figure 37: Semantic data annotation at the PSM level – SAP R/3 systems

In Figure 38 we present the data annotations for Web Service descriptions and
XML schema (XSD) definitions. The WS metamodel provides WSDL service de-
scriptions with ports and operations, that have annotatable Parameters. Mes-
sages are exchanged through parameters that consist of MessageParts which
can also be annotated. The structure of a message part is modeled with XML
schema Elements of the XSDlite metamodel. Furthermore Attributes of com-
plex XSD types are annotated.

+domainValue : DomainValue [0..*]

DomainObjectDomainObjectAnnotation

AnnotatableElement

AnnotatableElement

(from PSMMXSDLITE)

(from PSMMWSDL)
MessagePart

Parameter

(from AMM)

(from SMM)

Attribute

Element

source

+xsdElement

0..*

+annotation 0..1

source
+wsElement

0..*
+annotation 0..1

target

+domainObject

1..*

+annotation

0..1

has

-element

0..1

-messagePart

0..*

Figure 38: Semantic data annotation at the PSM level – Web Services and XML
schema

The annotations illustrated previously enable semantic description of data ori-
ented interface elements at the PSM level. To carry out the conflict analysis, a
model-to-model transformation of the PSM models to PIM models is performed
(see Section 9). Semantic descriptions given at the PSM level are thus trans-
formed to the PIM level as well. Like on the PSM level, all data elements that
can be annotated are specializations of the AnnotatableElement metaclass of
the PIMM (Figure 39). All TypedElements, such as Parameters and Fields of
complex types, and document elements are therefore linked to the annotation.

6.3 Functional Annotation

Functional annotations describe the meaning of computational and processing
behavior of model elements such as remote functions or Web service opera-
tions. The AMM provides associations between a functional element at the
CIM, PSM or PIM level and the domain function from a given ontology using
the DomainFunctionAnnotation element.

51

+domainValue : DomainValue [0..*]

DomainObjectDomainObjectAnnotation
+optional : Boolean [0..1]
+exclusive : Boolean [0..1]
+name : String [1]

TypedElement

+description : String [0..1]

AnnotatableElement

DocumentInterface

DocumentElement

ListElement
IEDocument

Parameter

MapValue

(from SMM)
(from PIMM)

(from AMM)

MapKey

Field

target

+domainObject

1..*+annotation

0..1

source

+pimElement

0..* +annotation

0..1

Figure 39: Semantic data annotation at the PIM level

At the CIM level, BusinessFunction and ConnectorFunction convey the pro-
cessing semantics of the integratable systems and connectors respectively (Fig-
ure 40). Thus they are annotated with domain function annotations.

+inputBO : BusinessObject [0..*]
+outputBO : BusinessObject [0..*]
+description : String

BusinessFunction

DomainFunctionAnnotationConnectorFunction DomainFunction

Transformer

Aggregator

(from CIMM) (from SMM)(from AMM)

Enricher

Splitter

Router

Timer

Filter

source

+cimFunction

0..* +annotation

0..1

target

+domainFunction

1..*+annotation

0..1

Figure 40: Semantic functional annotation at the CIM level

Figure 41 shows functional annotations for the J2EE and SAP R/3 platform
specific metamodel elements. J2EE systems can be annotated by linking Enter-
priseJavaBeans-elements (coarse granularity) and Method-elements of bean in-
terfaces (fine granularity) to the ontology. SAP R/3 functionality is represented
with the by annotatable elements SAP R3 Interface and Method.

DomainFunctionAnnotation

+description : String

AnnotatableFunction

+description : String

AnnotatableFunction

+name : String [1]

EnterpriseJavaBean

+name : String [1]
+Transaction : String

Method

(from PSMMSAPJCO)

+name : String [1]

SAP_R3_Interface

(from PSMMJ2EEEJB)

DomainFunction

+name : String [1]
...

Method

(from SMM)

(from AMM)

BAPI

source
+j2eeFunction

0..*

+annotation 0..1

source

+sapFunction

0..*

+annotation 0..1

target

+domainFunction

1..*+annotation

0..1

Figure 41: Semantic functional annotation at the PSM level – J2EE and
SAP R/3 systems

In the metamodel for interfaces of relational database management systems
the following metaclasses have the processing semantics, and are thus function-
ally annotated: Query, StoredProcedure, SQLQuery and its sub-classes. The
PSMM for Web services provides Operations that can be annotated (Figure 42).

52

DomainFunctionAnnotation

+description : String

AnnotatableFunction

+description : String

AnnotatableFunction+statement : String [1]
+name : String [1]

Query
StoredProcedure

DomainFunction

(from PSMMRELDB)

(from PSMMWSDL)

+name [1]

SQL_Interface

SQLQuery

Operation

(from AMM)

(from SMM)
Update

Create

Delete

Read

source
+relDbFunction

0..*

+annotation 0..1

source

+wsdlFunction

0..*

+annotation 0..1

target

+domainFunction

1..*+annotation

0..1

Figure 42: Semantic functional annotation at the PSM level – RDBMS and Web
Services

Finally, functional PSM elements are transformed to either IEModule (coarse
granularity) or FunctionInterface (fine granularity) at the PIM level. Both
can be annotated with domain functions from the ontology.

DomainFunctionAnnotation

+description : String [0..1]

AnnotatableFunction

FunctionInterface

DomainFunction

(from PIMM) (from SMM)(from AMM)IEModule target

+domainFunction

1..*+annotation

0..1

source

+pimFunction

0..* +annotation

0..1

Figure 43: Semantic functional annotation at the PIM level

6.4 Value Annotation

Value annotation is used to semantically describe instance information modeled
at the PSM level (see ValueRange description in section 3 on page 16). Figure 44
exemplarily shows the annotation of value range’s Entry of J2EE systems and
the value annotation at the PIM level.

DomainValueAnnotation

+description : String [0..1]

AnnotatableElement
+description : String [1]
+key : String [1]

AnnotatableValue

+description : String

AnnotatableValue

(from PSMMJ2EEEJB)

+name : String [1]

DomainValue

+key : String [1]

Entry

+name : String

ValueRange

(from SMM)

(from PIMM)

(from AMM)

source
+j2eeValue

0..1
+annotation 0..1

source

+pimValue

0..1

+annotation 0..1

target

+domainValue

1+annotation

0..1

0..*1

1..*

Figure 44: Value annotation at the PSM level (J2EE) and at the PIM level

6.5 Annotation Metamodel Constraints

To ensure valid usage of the Annotation Metamodel several OCL constraints
have been added to metamodel.

• An annotation must link at least to one element at either CIM, PSM or
PIM level.

53

context DomainObjectAnnotation inv:

self.cimBusinessObject->notEmpty() or self.pimElement->notEmpty() or

self.xsdElement->notEmpty() or self.wsElement->notEmpty() or

self.relDbElement->notEmpty() or self.sapElement->notEmpty() or

self.j2eeElement->notEmpty()

context DomainFunctionAnnotation inv:

self.cimFunction->notEmpty() or self.pimFunction->notEmpty() or

self.relDbFunction->notEmpty() or self.sapFunction->notEmpty() or

self.wsdlFunction->notEmpty() or self.j2eeFunction->notEmpty()

context DomainValueAnnotation inv:

self.j2eeValue->notEmpty() or self.relDbValue->notEmpty() or

self.sapValue->notEmpty() or self.pimValue->notEmpty()

• An annotation cannot link elements of different PSM types at the same
time. The following constraints implement XOR functionality. It was
not possible to use the OCL XOR operator, because for more than two
parameters it realizes at least semantics.

context DomainObjectAnnotation inv:

(

self.j2eeElement->notEmpty() and not self.relDbElement->notEmpty() and

not self.sapElement->notEmpty() and not self.wsElement->notEmpty() and

not self.xsdElement->notEmpty()

) or (

not self.j2eeElement->notEmpty() and self.relDbElement->notEmpty() and

not self.sapElement->notEmpty() and not self.wsElement->notEmpty() and

not self.xsdElement->notEmpty()

) or (

not self.j2eeElement->notEmpty() and not self.relDbElement->notEmpty() and

self.sapElement->notEmpty() and not self.wsElement->notEmpty() and

not self.xsdElement->notEmpty()

) or (

not self.j2eeElement->notEmpty() and not self.relDbElement->notEmpty() and

not self.sapElement->notEmpty() and self.wsElement->notEmpty() and

not self.xsdElement->notEmpty()

) or (

not self.j2eeElement->notEmpty() and not self.relDbElement->notEmpty() and

not self.sapElement->notEmpty() and not self.wsElement->notEmpty() and

self.xsdElement->notEmpty()

) or (

self.j2eeElement->isEmpty() and self.relDbElement->isEmpty() and

self.sapElement->isEmpty() and self.wsElement->isEmpty() and

self.xsdElement->isEmpty()

)

context DomainFunctionAnnotation inv:

54

(

self.j2eeFunction->notEmpty() and not self.relDbFunction->notEmpty() and

not self.sapFunction->notEmpty() and not self.wsdlFunction->notEmpty()

) or (

not self.j2eeFunction->notEmpty() and self.relDbFunction->notEmpty() and

not self.sapFunction->notEmpty() and not self.wsdlFunction->notEmpty()

) or (

not self.j2eeFunction->notEmpty() and not self.relDbFunction->notEmpty() and

self.sapFunction->notEmpty() and not self.wsdlFunction->notEmpty()

) or (

not self.j2eeFunction->notEmpty() and not self.relDbFunction->notEmpty() and

not self.sapFunction->notEmpty() and self.wsdlFunction->notEmpty()

) or (

self.j2eeFunction->isEmpty() and self.relDbFunction->isEmpty() and

self.sapFunction->isEmpty() and self.wsdlFunction->isEmpty()

)

context DomainValueAnnotation inv:

(

self.j2eeValue->notEmpty() and not self.relDbValue->notEmpty() and

not self.sapValue->notEmpty()

) or (

not self.j2eeValue->notEmpty() and self.relDbValue->notEmpty() and

not self.sapValue->notEmpty()

) or (

not self.j2eeValue->notEmpty() and not self.relDbValue->notEmpty() and

self.sapValue->notEmpty()

) or (

self.j2eeValue->isEmpty() and self.relDbValue->isEmpty() and

self.sapValue->isEmpty()

)

• Logical operators cannot group annotations of different type, e. g., it is not
allowed to combine a domain object annotation with a domain function
annotation.

context LogicalOperator inv:

(

(self.annotationElements->select(e |

e.oclIsTypeOf(DomainObjectAnnotation))->notEmpty()) and

not (self.annotationElements->select(e |

e.oclIsTypeOf(DomainFunctionAnnotation))->notEmpty()) and

not (self.annotationElements->select(e |

e.oclIsTypeOf(DomainValueAnnotation))->notEmpty())

) or (

not (self.annotationElements->select(e |

e.oclIsTypeOf(DomainObjectAnnotation))->notEmpty()) and

(self.annotationElements->select(e |

55

e.oclIsTypeOf(DomainFunctionAnnotation))->notEmpty()) and

not (self.annotationElements->select(e |

e.oclIsTypeOf(DomainValueAnnotation))->notEmpty())

) or (

not (self.annotationElements->select(e |

e.oclIsTypeOf(DomainObjectAnnotation))->notEmpty()) and

not (self.annotationElements->select(e |

e.oclIsTypeOf(DomainFunctionAnnotation))->notEmpty()) and

(self.annotationElements->select(e |

e.oclIsTypeOf(DomainValueAnnotation))->notEmpty())

)

6.6 Annotation Examples

The annotation metamodel allows to build various combinations of semantic de-
scriptions. We support five different annotation granularity levels (Figure 45a-
45e) that are analyzed by the semantic conflict analysis [5] and multi level
annotation across CIM,PSM and PIM level of abstraction (Figure 45f). Sin-
gle representation annotation (a) links one model element to one ontology
concept (e. g., DB column CUSTNAME → CustomerName). Containment
annotation (b) links one coarse grained model element to multiple concepts
(e. g., Parameter Address → {Street,Town,ZipCode}). Compositional anno-
tation (c) links multiple model elements to one coarse grained concept (e. g.,
{Field Firstname,Field Lastname} → CustomerName). Multiple and alter-
native representation annotation (d,e) combine annotations with the AND

and OR/XOR operators respectively (e. g., DB column CUSTNAME →(Identifier
&& CustomerName)). Finally, Figure 45f shows simultaneous annotation of
model elements on different levels of abstraction. This annotation type is used
to trace model transformation while abstracting from PSM to PIM level for
conflict analysis. Furthermore it can connect abstract business model elements
at the CIM level to interface realizations at the PSM and PIM level.

DB column
CUSTNAME

CustomerNameDOA

(a) Single representation

Parameter
Address

ZipCode

DOA Street

Town

(b) Containment annotation

Field
Firstname

Field
Lastname

DOA CustomerName

(c) Compositional annotation

CustomerName

Identifier

DOA

DOA

AND
DB column

CUSTNAME

(d) Multiple representation

ActiveCustomers

InactiveCustomers

DOA

DOA

OR
Parameter
Customer

(e) Alternative annotation

trafo

Method
Concatenate

FunctionInterface
Concatenate

DFA
String

Concatenation

PSM level

PIM level

(f) Multi level annotation

Figure 45: Annotation types and examples

Semantic annotation is implemented as Eclipse View in our Model-Based Inte-
gration Framework. At the left side of the annotation editor (Figure 46) the user
can load ontologies modeled with the graphical or tree-based semantic model

56

editor. At the right side CIM and PSM models are loaded to list annotatable
elements. In-between, annotations are created by using Add Annotation with
selected model elements at the left and right. A table of existing annotations
is shown in the middle. Annotation models are maintained in the project’s
workspace and can be loaded at any time for additions.

Figure 46: Semantic Annotations Editor

57

7 Property Metamodel

In order to support the analysis of non-functional properties (NFP) in integra-
tion scenarios, the Property metamodel has been created to facilitate specifica-
tion of relevant properties. NFP such as availability, security, timeliness or cost
often play the crucial role in software integration when it comes to satisfying
business process requirements. Their analysis is either neglected or informal,
following best practices. Sometimes this is not enough as non-functional incom-
patibilities may compromise not only the quality of integration solution, but also
limit its functionality. Therefore, we first discuss and describe the (incomplete)
taxonomy of NFP that are relevant for software and data integration, and then
propose a metamodel that enables their dynamic definition.

7.1 NFP Taxonomy

The taxonomy is not intended to be complete (next section explains how it
can be expanded), but will be used here as a starting point to discuss mod-
eling of non-functional aspects of software systems, interfaces, parameters and
connectors, evaluate integration solutions, compute overall properties, detect
non-functional mismatches and rank integration alternatives. The first level of
taxonomy entries are property categories which thematically group NFP defined
at the second level. The third level (not shown in the picture) characterizes
each property by description, type (e. g., float values), scope and the default
unit (e. g., milliseconds for latency or currency codes for cost per invocation).
Units are described either using standards such as ISO 80000-3:2006 (time), ISO
80000-13:2008 (IT units), ISO 8601 (date) or ISO 4217 (currency code), or as
enumerations (e.g., secure transport protocols or data encryption algorithms).
In the following we provide more details on each property category.

Figure 47: Taxonomy of software integration non-functional properties (excerpt)

58

Reliability incorporates properties related to the ability of a system or compo-
nent to perform its required functions under stated conditions for a specified
period of time. Reliability is the probability that the system continues to func-
tion until some time t. Usually, steady-state reliability is used to characterize
integrated systems, where observed interval is the system’s lifetime. Reliability
attributes such as failure-rate (λ) or mean time to system failure (MTTF) can
also be specified. The taxonomy allows to relate attributes and properties using
expressions, for example λ = 1

MTTF (this relation is not shown in Figure 47).
Availability is similar to reliability, with one important exception: it allows
for a system to fail and to be repaired. Thus, additional properties appear
in this category: mean time to repair (MTTR), mean time between failures
(MTBF) as well as average uptime/downtime per year. Again, relations between
properties are defined (e.g., A = MTTF

MTTF+MTTR). Using this category, fault-
tolerant lifecycle of integrated systems and their components can be analyzed.
Cost related NFP are used to compare different software integration alternatives.
For example, comparison of cost per data transfer -properties is achieved by
specifying their unit in terms of a currency code in relation with the base unit
byte, combined with a metric or binary prefix. The value type is float-based.
Values with different currencies and different amounts of data volumes may
be compared by determining the current exchange rate and by converting the
prefix, but external source of currency conversion is then required (rate table).
Performance category includes properties that are either bandwidth or timing
related. They enable detection of possible integration bottlenecks and allow
investigation of connector features such as caching as well as timing constraints.
For example, worst-case execution time (WCET) is the maximum amount of
time that elapses between invocation of a system or interface and its reaction,
specified using integer as value type and second as unit.
Security category describes encryption and access control related properties.
We will exemplary describe the network encryption property, consisting of three
sub properties strength, protocol and technology. Encryption strength is the key
size expressed by integer values with the default unit bit. It is more difficult to
compare protocols or technologies, because they cannot be expressed by numeric
values. The property therefore makes use of an enumeration including possible
protocols, together with a key. If the protocol property it is assigned to a system,
a set of supported protocols is selected and can be compared to other sets.
Additionally, rating for each protocol can be added (e. g., based on encryption
algorithm and module validation) to facilitate comparison.
Capacity properties are considered to avoid system overloads during integration.
For example, data size property specifies the maximum amount of data that
can be passed to a system at once (value type: integer, default unit: megabyte).
Together with throughput, duration of integration runs can be thus analyzed.
Integrity describes transactional behavior. Isolation level supports read uncom-
mitted, read committed, repeatable read and serializable levels. Timeout defines
system or interface timeout which can be used to discover timing mismatches,
e.g, if a service with 1 hour timeout is waiting for a service with 1 day WCET,
there is a timing conflict. Enlist specifies transactional modes (support, require

59

or join). Thus, incompatibilities can be discovered where one system requires
transactions but its integration partners do not support them.
Location category describes geographical system/service location, as it may be
necessary to determine validity of an integration scenario. For example, confi-
dential data storage may be restricted to particular countries, because of legal
considerations. To enable this we include country name and its ISO code, as
well as city and GPS coordinates of the system location.
Result quality describes attributes of the data/messages produced by a system.
Accuracy represents calculation correctness (e.g., number of decimal places or
maximal guaranteed computation error), while precision is the measure of sys-
tem output quality which may be gathered and evaluated statistically over a
period of time, potentially also by users (in form of a reputation scale).
Accessibility is expressed by time-constrained access: it represents concrete time
intervals or periodic time slots in which a system is accessible for integration
tasks (e. g., Extract-Transform-Load tasks done on Sundays 0:00-5:00 a.m.).

7.2 Non-functional Property Metamodel

The taxonomy presented in the previous section obviously cannot aim to be
complete. It represents an excerpt of properties we found to be relevant in the
context of software integration. In order to address dynamic generation of addi-
tional properties, we propose a property metamodel (PMM) for expressing user-
defined NFP and assigning them to other model elements. The abstract syntax
of the PMM is used to build non-functional property taxonomies, like the one in
the previous section, enabling their usage in model-driven development environ-
ments. In the following we make use of the typewriter font to refer to meta-
model classes and attributes, and describe examples on instance level with italic
font. In Figure 48 the basic structural features of the metamodel are shown.
Properties, units and unit multiples are modeled separately and are grouped into
categories. The categories and their elements together form the PropertyModel.
We also define the NamedElement metaclass (not shown in the picture) with the
attributes +shortName:String[1] and +longName:String[1] which are passed
on to the following metaclasses: PropertyModel, Category, Property, Simple-
Unit, UnitMultiple, EnumerationUnit and EnumerationLiteral. The short
name is used to express abbreviations, the long name is the full name of an
element instance (e. g., for a Property: MTTF, Mean Time To Failure).
Figure 49 depicts details of the Property metaclass. The scope-attribute
defines NFP validity. The PropertyScope can either be System-wide (e. g.,
mean time to repair of a database system), Interface-wide (e. g., availabil-
ity of a Web service), Function-related (e. g., cost per invocation of a Web
service operation) or Parameter-related (e. g., accuracy of a J2EE component
method’s return value). The description-attribute includes additional ex-
planatory text. The attribute valueType constraints the value kind of a prop-
erty to support comparison: character-based values (String), floating point
numbers (Double), integer-based representations (Long) and Boolean-values.
Properties can be nested with the partOf-relation. A property is associated

60

PropertyModel

+scope : PropertyScope [1..*]
+description : String [1]
+valueType : PropertyValueType [1]

Property

+factor : double [1]
+replaceName : Boolean [1] = false
+symbol : String [1]

UnitMultipleAbstractUnit

PropertyCategory MultipleCategory
Category

UnitCategory

unitCatagories

+unitCatagory 0..*

+model 1
propertyCategories

+propertyCategory 0..*

+model 1
multipleCategories

+multipleCategory 0..*

+model 1

unitMultiples

+unitMultiple 0..*

+multipleCategory 1

units

+unit 0..*

+unitCategory 1

properties

+property 0..*

+propertyCategory 1

Figure 48: PMM - Structural modeling features

with a default unit, which is the standard unit for its use and comparison (e. g.,
Mbit/s for throughput-property). Dependencies between properties can be de-
clared with PropertyCorrelation. It is evaluated at runtime and can contain
mathematical or boolean expressions. For instance, the calculation rule for
availability A = MTTF

MTTF+MTTR can be expressed with MathML Content Markup
using property names as variables.

+scope : PropertyScope [1..*]
+description : String [1]
+valueType : PropertyValueType [1]

Property

+expression : String [1]
+expressionType : String [1]

PropertyCorrelation

Boolean
Double

String
Long

<<enumeration>>

PropertyValueType

Parameter

Interface
Function

System

<<enumeration>>

PropertyScope

AbstractUnit

partOf
+subProperty0..*+parentProperty 0..1

+defaultUnit

1

+property 2..*

Figure 49: PMM - Non-functional properties and their units

Figure 50 shows four different types of units which are defined to build NFP-
unit definitions. The SimpleUnit is used to create basic SI- or ISO 80000 units
such as second or bit. Besides the shortName and longName inherited from
NamedElement, the symbol-attribute is used for symbolic representation of a
unit, if available. DerivedUnits are created from simple ones by combining them
with UnitMultiple. A multiple is either a prefix added in front of the unit name
(e. g., metric prefix kilo, binary prefix kibi) or a non-SI multiple that replaces the
whole unit name (e. g., minute). A multiple of a unit is represented by a factor
and a symbol. The name change is controlled by the replaceName-attribute.
Composed units are modeled with the CompoundUnit metaclass. It combines
left- and right-handed units with an Operator. All four unit specializations
can be combined, allowing reuse and nesting (for example, units such as kg/m3

can be created). Finally, the EnumerationUnit describes possible values of a
property as a set of EnumerationLiterals. The allowedSelection-attribute
declares whether a property assignment must use exactly one literal or can use

61

many literals. The key-attribute of the EnumerationLiteral is an additional
unique numeric code. Furthermore a rating value can be given that assesses a
literal (e. g., encryption technologies). For example, our property model includes
the enumeration ISO 4217 currency names and code elements that is used for
cost properties.

+factor : double [1]
+replaceName : Boolean [1] = false
+symbol : String [1]

UnitMultiple

+allowedSelection : Selection [1]

EnumerationUnit

AbstractUnit

+operator : Operator [1]

CompoundUnit

+key : Integer [1]
+rating : Integer [0..1]

EnumerationLiteral

+symbol : String [0..1]

SimpleUnit

Multiplication
Division

<<enumeration>>

Operator

ExactlyOne
Many

<<enumeration>>

Selection

DerivedUnit

+leftUnit

1

+rightUnit

1

+simpleUnit

1

+unitMultiple 1

+literal 1..*

Figure 50: PMM - Simple, derived, compound and enumeration units

The PropertyAssignment (Figure 51) is the link between any model element
that should be described by a NFP and the actual property, its value and ad-
ditional attributes. The type of an assignment specifies whether the assigned
property is offered/provided by the system or interface (e. g., provided uptime),
or expected/required from other systems (e. g., required network encryption,
meaning anyone interacting with the system is required to use a certain encryp-
tion strength or a secure protocol). Property value is either given as a single
value (PropertyValue), as PropertyValueRange (e. g., minimum and maxi-
mum value) or if necessary as a set of single values (PropertyValueSet). In
case that another unit should be used for assignment, default unit can be over-
ridden by the unitModifier-attribute (it is constrained that the unit can only
be modified along its quantity, e. g., using other multiples). If a property makes
use of an enumeration unit, the assignment selects literal(s) of that enumeration
(enumLiteralSelection). The cardinality of the attribute is restricted to 0..1
in case allowedSelection is set to ExactlyOne.

+scope : PropertyScope [1..*]
+description : String [1]
+valueType : PropertyValueType [1]

Property

AbstractPropertyValue

+type : PropertyType [1]

PropertyAssignment

PropertyValueRange

+key : Integer [1]
+rating : Integer [0..1]

EnumerationLiteral

PropertyValueSet

ProvidedRequired
Required
Provided

<<enumeration>>

PropertyType

+value : String [1]

PropertyValue

AbstractUnit

+property 1

+unitModifier 0..1

+end 1

+start 1 +value

2..*

+propertyValue 1

+enumLiteralSelection0..*

Figure 51: PMM - Property assignment

The example of using property metamodel to annotate an SAP BAPI interface
(see Section 3.1 for description of SAP metamodel) is given in Figure 52. It

62

depicts how required and provided availability, mean time to repair, mean time
to failure, and worst-case execution time can be specified.

Figure 52: NFP editor example

63

8 Connector Metamodel

In this section the Connector metamodel will be described. Packages struc-
ture, types and message contain static structure description of used libraries,
in particular class structure, type system and supported message types. Pack-
ages connector and expression form DSL abstract syntax. The connector pack-
age contains elements of message processing components (EAI patterns such
as transformer, router, filter), application endpoints and message routing logic.
The expression package contains elements for expression modeling. Message
processors have references to corresponding message transformation expressions,
which define their behavior.

8.1 Connector Package

The connector package contains elements required to describe message flow and
processing. It specifies the upper abstraction level for connector design and
references expression package for behaviour specification of message processors.
Using messages and message processors to specify connector functionality seems
to be the most generic and widely accepted abstraction approach. Furthermore,
it enables service-oriented connector realization. There are two basic types of
connector components: application endpoints and message processors. Appli-
cation endpoints generate and consume messages by wrapping modelled system
interfaces, and message processors manipulate (transform, route, split etc.) mes-
sages. Components send or receive messages of a specific message type via ports.
Messages are transported by message channels which have a message channel
type and a message exchange pattern. Excerpt from the connector package is
given in Figure 53.

Figure 53: Package connector - Connector Metamodel

To avoid metamodel changes which would make refactoring of the connector
design and generation framework necessary for most changes, we choose an
instance-based library approach instead of using metamodel element specializa-
tions. When creating a new connector model there is an automatic reference

64

to the library connector model. It contains allowed message processor types,
message channel types and message exchange patterns which then can be used
to specify elements in the new connector model. Message types are not part of
the library connector model because they are component-specific and therefore
instantiated in the new model. They can be associated to component ports
to specify supported data format. Ports connected via message channel must
support the same message type.
The following predefined library elements are included in DSL:

• Message processor types: Aggregator (combines several messages to one
single message), Content Enricher (extends message content to serve spe-
cial data requirements of message receivers), Filter (passes only specific
messages), Content-based Router (selects message receivers by analyz-
ing message content), Splitter (divides one message into several messages
containing specific parts of the original message), Timer (generates event
messages to control other message processors or application endpoints)
and Transformer (changes message format and/or message content by ap-
plying transformation rules). Behavior of all message processors is config-
ured/programmed using elements from the expression package, e.g., the
logic that Transformer has to execute or routing rules for Content-based
Router are thus defined.

• Message channel types: Point-to-Point (transports messages from a sender
to exactly one receiver) and Publish-Subscribe (transports messages from
a sender to several receivers).

• Message exchange patterns: Out-Only (one-way message exchange where
the receiver returns a status), Robust Out-Only (reliable one-way message
exchange where the receiver returns a status, if the status is negative the
sender returns a status as well), Out-In (two-way message exchange where
the receiver responds with a message which is confirmed by the sender
with a status) and Out-Optional-In (two-way message exchange where
the receiver’s response message is optional).

8.2 The Expression Metamodel

The expression package is used to model expressions which define behavior of
message processors. One of the main problems when using existing workflow
modeling notations is that the actual expressions are not modeled at all. They
have to be input as plain text using script language such as OCL, internal pro-
prietary language like in E2E Bridge, or even Java like in Mathilda [22] [21].
We implemented an expression metamodel that allows to model transformation
expressions with arbitrary function/operation calls, support for the high-order
function calls and lambda expression definitions. The expression flow meta-
model is built using abstract notions, which allows us to define actual types of
the activities in runtime.

65

Figure 54: Package expression - Expression Metamodel

We now examine the main concepts which are introduced in the expression meta-
model (excerpt is shown in Figure 54). The ActivityType represents functions or
operations. PinType abstracts the function or operation formal parameter. Col-
lection of ActivityEdgeTypes shows which pin types are allowed to be connected
with each other. The metamodel also supports different types of connections,
which are represented by the FlowType metaclass. In other words combinations
of ActivityType, PinType and ActivityEdgeType elements form the library of
available actions and allowed connections of specified flow types between them.
Actions can represent function or operation calls and connections between them
show possible actions, which can produce/consume values that can be used for
fulfilling formal parameters. The allowed connections can be determined from
the type information stored in the structure package.
Activity metaclass represents the actual function or operation call, determined
by the corresponding ActivityType. The Pin metaclass shows a formal param-
eter value that is passed to a function call. The value is determined using
ActivityEdge metaclass, which shows directed flow from one Pin to another.
The expression metamodel allows definition of domain specific semantics and
custom operations and functions.

8.3 The Structure packages: structure and message

The structure and message packages contain elements that describe static struc-
ture of available libraries (Figure 55). They allow storing information about li-
brary contents, such as classes, functions and properties. The message package
allows to model typed messages that can be received and processed by applica-
tion endpoints and message processors. A message contains header and body
parts. Each part has a name and type from the structure package. Any class
or basic type can be used as a message part type.

66

Figure 55: Packages structure andmessage - Structure and Messages Metamodel

8.4 Concrete Syntax

In this section, the concrete syntax and semantics of the proposed Connector
Metamodel is described. We first discuss graphical notation for instantiating
connector package, followed by graphical and textual syntax for the expression
package modeling.
The connector package represents the upper abstraction level where message
flow is used to model an integration process. Application endpoints and message
processors are parts of the flow and can generate/consume/transform event
and data messages. Figure 56 shows an instance of the connector package,
realized using our graphical syntax implemented with Eclipse GMF. Message
types are specified as properties and are not visualized in the process flow.
They are assigned to ports of application endpoints and message processors to
specify data schema requirements of connector component interfaces. Existing
message processor types specified in the component library instance are assigned
to message processors. In case that required pattern is not available, it is possible
to expand the library instance. Existing patterns are then configured and new
patterns are specified by lower level behavior description using the expression
package.
Supported activity types of the expression package (graphical and textual syn-
tax) are given in Table 9. The main concept is function/operation call. In many
languages (e.g. C++, C#, Scala) the operator concept is implemented using
the function call technique. We also use one element for both concepts. Formal
parameters of an activity are represented with the Pin element, as it is done in
UML. The flow of values from pin to pin is expressed using activity edge element
which describes directed connection between two pins and also specifies connec-
tion type. Default flow type for passing values in function calls is message flow.
Intermediate calculation results are stored using the variable element. It is also
used to express formal parameters. The presented DSL is a functional language,
so it enables system integrators to create Lambda-expressions and high-order

67

Activity Type Name Graphical Notation Textual Concrete Syntax

Function/Operation Call � getOrders()

Property Accessors � getOrders().first().name

Variable/Parameter � Order order=getOrders().first();

Lambda Expression o|o.name.startsWith(”Michael”)

Pin � NA

High-Order Function Call � getOrders().select(o|o.name.startsWith(”Michael”))

For/Iterator
for

List<Item> l = for(o : orders) returning new Item(o);

Conditional Operator if(expression) { doSmth();} else { doSmthElse();}

Message Flow � NA

Conditional Flow � NA

Collection Flow � getOrders()->items.sum();

Table 9: Activity Types in the DSL Graphical Concrete Syntax

functions. Support of functional concepts allows to offer rich set of collection
processing possibilities, such as filtering, sorting or mapping. These functions
are provided by the standard library. As additional possibility we introduce col-
lection flow that acts as ’for’ operator. The collection flow receives a collection,
iterates through it and sends each collection element iteratively or in parallel
to a destination pin. The strong support for collection processing was required
by the nature of system integration scenarios. The conditional activity allows
to implement branching of message flow. Based on the boolean value received
using conditional flow, conditional activity selects one branch to which it passes
its message.

8.5 Example Scenario

We now introduce a example, of using connector metamodel and concrete syn-
taxes for defining integration scenarios. It comes from the publishing domain
and requires integration of three systems: web shop, ERP system and credit
card payment system. The web shop collects orders and credit card information
from customers but the system is not able to charge any credit card account.
That transaction functionality is provided by the payment system. All success-
ful orders have to be available in the ERP system to create monthly performance
reports and to prepare tax documents. A connector between the three systems
has to generate a payment transaction for every customer order coming from
the web shop and send it to the payment system. Already finished transactions
must be identified and the order status in the web shop automatically changed

68

according to the corresponding transaction status in the payment system. Pro-
cessed orders are transferred to the ERP system afterwards. Because all three
systems rely on different back end technologies (MySQL, MSSQL and SAP R/3)
the connector has to overcome technical interface heterogeneity and at the same
time it must deal with three different data models.
The connector model (instance of the connector package) is given in Figure 56.
The message flow starts with an event message, generated every 10 minutes
by the Timer component. The event message is transferred via the Publish-
Subscribe message channel to the Web shop and Payment system Application
Endpoint. Both endpoints adapt (wrap) native system interfaces. After receiv-
ing the event both application endpoints send requested data messages to the
aggregator which generates one message out of them. This message contains
Web shop orders and payment transactions and is delivered to the message
transformer. The transformer rearranges message content and generates tuples,
each containing one Web shop order and the corresponding payment transaction
(if one exists). The message splitter then divides the message into smaller mes-
sages containing only one tuple and sends them to the content based router and
the OrderToIdoc Transformer which prepares the message for the ERP Applica-
tion Endpoint. If the message contains an order with corresponding transaction,
it is routed to the OnlyOrderIDAndStatus transformer which generates a mes-
sage containing only order ID and order status. The status is set to paid and
the message is sent to the Web shop Application Endpoint. If the message con-
tains only an order and no transaction, it is routed to the OrdersToTransaction
transformer which generates a payment transaction message from it.

Figure 56: Example component package instance

The code given in Figure 57 shows exemplary expression specified in textual
syntax that defines behavior of the ToCorrespondingTuples Transformer. It
receives two parameters: incoming and outgoing messages. It then obtains
orders and transaction collections from the incoming message payload. Order
collection is transformed to the new collection of tuples, which contain order and
corresponding transaction. The transformation is accomplished using the for

69

operator. Corresponding transactions are obtained from transaction collection
using the select function. It filters the collection using the supplied lambda
expression. The resulting collection of tuples is then set as the payload of the
outgoing message. Figure 58 shows the same transformation model expressed
using graphical syntax.

void process(Message input, Message output) {
List<Order> orders = input.payload.orders;
List<Transaction> transactions = input.payload.transactions;

output.payload.result = for(o : orders) returning new Tuple(o,
transactions.select(t | t.orderId == o.orderId));

}

Figure 57: Message transformation modeled using the textual DSL

input : Message

orders

output : Message

payload

payload
transactions

for

select

orderId

orderId

=

result

Figure 58: Message transformation modeled using the graphical DSL

70

9 Model Transformation

Model transformation is one of the central steps in model-driven engineering. It
enables machine processable and automated refinement/abstraction over mul-
tiple levels of hierarchy. OMG suggests the following logical order of model
transformation: CIM → PIM → PSM. Here we adopt slightly different ap-
proach and perform CIM → PSM → PIM transformation. The reason is that
we perform system integration and need to collect technical information about
the existing interfaces first (PSM level) and then abstract them in order to
compare and mediate between them (PIM level). Correspondingly one has to
define transformation rules between the PSMM to PIMM to enable this step.
Formally, a model transformation has to define the way from the source model
MA conforming to metamodel MMA to the target model MB conforming to
metamodel MMB (Figure 59).

Figure 59: Model transformation hierarchy

In our approach we use the Atlas Transformation Language (ATL) [2] to specify
and perform model transformation. It is a hybrid language and combines im-
perative and relational concepts. Operations on sets are carried out by OCL 2.0
constraints. This is useful to select the correct source elements from the source
model needed in the transformation rules. ATL is available as a plugin for the
Eclipse Modeling Framework (EMF). The input artifacts for model transforma-
tion are two metamodels (source and target) in Ecore format and one source
model conforming to the source metamodel. The output artifact is a model
conforming to the target metamodel.
The abstraction from platform specific to platform independent models is neces-
sary for the comparison of two (or more) different systems. Within one uniform
metamodel one compares the structure, behavior, semantic and properties of
the two systems. In the BIZYCLE framework this comparison is made within
the conflict analysis [5].
In this report we cover only the transformation from PSMM to PIMM, that is,
abstraction of technical interface descriptions to the common, platform inde-
pendent level. For that purpose, PSMM packages are transformed into PIMM

71

packages, as depicted in Figure 60. For each PSMM package, an equivalent
PIMM package exists. Thus, core packages of all PSMMs are transformed into
single PIMM core package. The same is done for other packages such as struc-
ture, property, semantic or communication. In this process generalization is
performed. Also note that core, structure and communication packages are
transformed, while property and semantic packages are extended. The reason is
that semantic and property attributes are specified as annotations using model
weaving, which although being a technical aspect only, merits the distinction.
Details of transformations for all systems and packages are given in the following
sections, with one exception: we discuss value range transformation here, as it
is equal for all PSMMs. Furthermore, it can serve as a quick example of model
transformation.

Figure 60: Model transformation in BIZYCLE

The transformation for parameter value ranges are equal within all PSMMs (see
Table 10). In figure 61 an example is given where the value range model from
chapter 3 is transformed to the PIM level. The Parameters at PSM level are
referenced with a defined ValueRange within the StructRoot. The Entries

will be transformed to AnnotatableValues at PIM level. At PIM level all
TypedElements can have AnnotatableValues.

PSMM ⇒ PIMM

StructRoot + ValueRange + Entry ⇒ ... + TypedElement + AnnotatableValue

Table 10: Value range transformation rule

9.1 Core Package Transformations

9.1.1 SAP R/3

The root element SAP R3 of the SAP R/3 metamodel is transformed to the
element ModelRoot of the PIMM. The BAPI and the IDOCType elements are
transformed to Functional- and DocumentInterface.

72

Keys

Description: Goods Issue/Delivery

Description: Goods Receipt

Description: Goods Issue

}

{

Figure 61: Value range transformation example

The element IDOCType consists of the control and data record. Furthermore the
DataRecord is made up of Segments and Fields. The proper Parameter types
are the Fields, so only the IDOC Field will be generalized to a DocumentElement.
Segments exist only to sort the Fields, so they are not required in PIMM. The
ControlRecord is also not required, because it consist only of administrative
information.

PSMMSAPJCO ⇒ PIMM

SAP R3 Interface ⇒ IEModul
... + BAPI ⇒ IEModul + FunctionInterface

... + IDOCTYPE ⇒ IEModul + IEDocumentRoot + DocumentInterface
... + IDOCField ⇒ IEModul + IEDocumentRoot + DocumentInterface + DocumentElement

... + Import ⇒ IEModul + FunctionInterface + ImportParameter

... + Export ⇒ IEModul + FunctionInterface + ExportParameter

Table 11: Transformation of SAP R/3 core package to PIMM

9.1.2 Relational Database Systems

The root element DBMS and the SQL Interface element are transformed to
the PIMM elements ModelRoot and IEModul. All Query elements are trans-
formed to FunctionalInterfaces. The Input and Output parameter are trans-
formed to Import and Output parameter at PIMM level and are collected un-
der the FunctionalInterfaces. There are two different ways of transform-
ing SQL queries to PIM level. If the Query is a Read Query, we transform
the Input parameter to a simple ImportParameter with a SimpleType. The
Output parameter will be transformed to ExportParameter, but the type is
a Bag with ListElements. The structure of the ListElements will be de-
fined within a ComplexType with further Fields in it. The Fields are defined
with SimpleTypes. The second way of transforming SQL Queries regards the
Create, Update and Delete query. Here, the Input parameter will be trans-
formed to ImportParameter with a SimpleType. The Output parameter will

73

be transformed to ExportParameter with a SimpleType.

PSMMRELDBSQLJDBC ⇒ PIMM
DBMS ⇒ ModelRoot

SQL Interface ⇒ IEModul
SQL Interface + Query ⇒ IEModul + FunctionInterface

... + Read + Input ⇒ IEModul + FunctionInterface + ImportParameter
⇒ StructRoot + SimpleType

... + Read + Output ⇒ IEModul + FunctionInterface + ExportParameter
⇒ StructRoot + Bag + ListElement
⇒ StructRoot + ComplexType + Field

... + Create + Input ⇒ IEModul + FunctionInterface + ImportParameter
⇒ StructRoot + Bag + ListElement
⇒ StructRoot + ComplexType + Field

... + Create + Output ⇒ IEModul + FunctionInterface + ExportParameter
⇒ StructRoot + SimpleType

... + Update + Input ⇒ IEModul + FunctionInterface + ImportParameter
⇒ StructRoot + SimpleType

... + Update + Output ⇒ IEModul + FunctionInterface + ExportParameter
⇒ StructRoot + SimpleType

... + Delete + Input ⇒ IEModul + FunctionInterface + ImportParameter
⇒ StructRoot + SimpleType

... + Delete + Output ⇒ IEModul + FunctionInterface + ExportParameter
⇒ StructRoot + SimpleType

Table 12: Transformation of relational database core package to PIMM

9.1.3 Java 2 Platform, Enterprise Edition(J2EE)

The root element J2EE of the J2EE metamodel is transformed to the element
ModelRoot of the PIMM. The J2EE Component and EnterpriseJavaBean are
transformed to IEModul. The IEModul can contain further IEModuls as child el-
ements, which are transformed EnterpriseJavaBeans from the PSM level. The
FunctionInterfaces are transformed Methods of the EnterpriseJavaBeans.
The Input and Output elements of the PSM level are transformed to Import-

and ExportParameter.

J2EE ⇒ PIMM
J2EE ⇒ ModelRoot

... + J2EE Component ⇒ IEModul
... + EnterpriseJavaBean ⇒ IEModul + IEModul

... + J2EE Interface + Method ⇒ ... + IEModul + FunctionInterface
... + Input ⇒ ... + FunctionInterface + ImportParameter

... + Output ⇒ ... + FunctionInterface + ExportParameter

Table 13: Transformation of J2EE core package to PIMM

9.1.4 Web Services

The transformation of Web service core metamodel package processes only a
subset of WSDL elements, more precisely those elements which are relevant for
the conflict analysis at the PIMM level. The element ModelRoot is transformed
to the element ModelRoot of the PIMM. The WSDLDefinition is transformed to
IEModul. An Operation will be transformed to a FunctionInterface. Param-
eters (InputParameter, OutputParameter) and the referenced Messages and
MessageParts are transformed to ImportParameters and ExportParameters
respectively. A MessagePart can reference either a Type or an Element. In case
of an Element-reference, the Type of this referenced Element is used as the Type
for the Parameter. All Type specific transformations are described in chapter
9.2.6.

74

PSMMWSDL ⇒ PIMM
ModelRoot ⇒ ModelRoot

WSDLDefinition ⇒ IEModul
WSDLDefinition + Operation ⇒ IEModul + FunctionInterface

... + InputParameter + Message + MessagePart ⇒ IEModul + FunctionInterface + ImportParameter
... + OutputParameter + Message + MessagePart ⇒ IEModul + FunctionInterface + ExportParameter

Table 14: Transformation of Web services core package to PIMM

9.1.5 Extensible Markup Language (XML)

The transformation of XML metamodel core package uses the XSD Lite rules
from chapter 9.2.6.

9.2 Structure Package Transformations

9.2.1 SAP R/3

The types of the Import and Export Parameters are collected under Structure
Root. The three different types, FieldType, StructType and TableType, are
transformed to SimpleType, Complex Type and Bag respectively. Every Import

and Export Parameter has its own type within the PSM, after the transforma-
tion to PIM as well.

PSMMSAPJCO ⇒ PIMM

... + Struct + SimpleType ⇒ StructRoot + ComplexType + Field
... + Table + SimpleType ⇒ StructRoot + Bag + ListElement

⇒ StructRoot + ComplexType + Field

... + CHAR ⇒ StructRoot + STRING
... + STRING ⇒ StructRoot + STRING

... + XSTRING ⇒ StructRoot + STRING
... + BYTE ⇒ StructRoot + OPAQUE

... + FLOAT ⇒ StructRoot + NUMBER
... + DATE ⇒ StructRoot + PointInTime
... + TIME ⇒ StructRoot + PointInTime
... + BCD ⇒ StructRoot + NUMBER
... + NUM ⇒ StructRoot + NUMBER
... + INT ⇒ StructRoot + NUMBER

... + INT1 ⇒ StructRoot + NUMBER

... + INT2 ⇒ StructRoot + NUMBER

Table 15: Transformation of SAP R/3 structure package to PIMM

9.2.2 Relational Database Systems

The JDBC types are transformed to simple PIMM types. There are no Complex
Types. Transformations are given in Table 16.

9.2.3 Java 2 Platform, Enterprise Edition(J2EE)

J2EE ComplexTypes are transformed one to one to PIMM complex types, as
child elements of the StructureRoot at the PIM level (Table 17).

9.2.4 Web Services

The transformation rules are covered by XSD Lite (see chapter 9.2.6).

75

PSMMRELDBSQLJDBC ⇒ PIMM
... + CHAR ⇒ StructRoot + STRING

... + VARCHAR ⇒ StructRoot + STRING
... + LONGVARCHAR ⇒ StructRoot + STRING

... + NUMERIC ⇒ StructRoot + Number
... + DECIMAL ⇒ StructRoot + Number
... + TINYINT ⇒ StructRoot + Number

... + SMALLINT ⇒ StructRoot + Number
... + INTEGER ⇒ StructRoot + Number

... + BIGINT ⇒ StructRoot + Number
... + REAL ⇒ StructRoot + Number

... + FLOAT ⇒ StructRoot + Number
... + BINARY ⇒ StructRoot + Opaque

... + VARBINARY ⇒ StructRoot + Opaque
... + LONGVARBINARY ⇒ StructRoot + Opaque

... + DATE ⇒ StructRoot + Date
... + TIME ⇒ StructRoot + Time

... + TIMESTAMP ⇒ StructRoot + Date
... + CLOB ⇒ StructRoot + STRING

... + BIT ⇒ StructRoot + BOOLEAN

Table 16: Transformation of relational database structure package to PIMM

J2EE ⇒ PIMM

... + ComplexType + Field ⇒ ComplexType + Field
... + ComplexType + Method ⇒ ComplexType + Method

... + CollectionType ⇒ StructureRoot + Bag/Set
... + CollectionType + SimpleType ⇒ StructureRoot + Bag/Set + SimpleType

... + BYTE ⇒ StructRoot + Opaque
... + BOOLEAN ⇒ StructureRoot + Boolean

... + FLOAT ⇒ StructureRoot + Number
... + DOUBLE ⇒ StructureRoot + Number

... + LONG ⇒ StructureRoot + Number
... + INTEGER ⇒ StructureRoot + Number

... + SHORT ⇒ StructureRoot + Number
... + STRING ⇒ StructureRoot + STRING

... + BIGDECIMAL ⇒ StructureRoot + Number
... + DATE ⇒ StructureRoot + PointInTime
... + TIME ⇒ StructureRoot + PointInTime

Table 17: Transformation of J2EE structure package to PIMM

9.2.5 Extensible Markup Language (XML)

The transformation rules are covered by XSD Lite (see chapter 9.2.6).

9.2.6 XSD Lite

The XSDLite-to-PIMM transformation is used by two other transformations:
Web services and XML. The XSDLite metamodel represents a simplification of
the XML Schema Definition (XSD), hence the corresponding XSD Lite trans-
formation rules consider only structural aspects as shown in table 18.

9.3 Communication Package Transformation

9.3.1 SAP R/3

The communication channel synchronous RFC is abstracted to SynchronCall.
The transactional, queued and asynchronous RFC are abstracted to AsynchronCall
at the PIMM level.

76

XSD Lite ⇒ PIMM
Type ⇒ Type

XsdBaseType ⇒ SimpleType
’string’ ⇒ String

’int’ ⇒ Number
’short’ ⇒ Number

’unsignedShort’ ⇒ Number
’unsignedInt’ ⇒ Number

’unsignedLong’ ⇒ Number
’positiveInteger’ ⇒ Number
’negativeInteger’ ⇒ Number

’nonPositiveInteger’ ⇒ Number
’nonNegativeInteger’ ⇒ Number

’float’ ⇒ Number
’long’ ⇒ Number

’double’ ⇒ Number
’decimal’ ⇒ Number

’date’ ⇒ PointInTime
’dateTime’ ⇒ PointInTime

’time’ ⇒ PointInTime
’gDay’ ⇒ PointInTime

’gMonth’ ⇒ PointInTime
’gMonthDay’ ⇒ PointInTime

’gYear’ ⇒ PointInTime
’gYearMonth’ ⇒ PointInTime

’byte’ ⇒ Opaque
’base64Binary’ ⇒ Opaque

’anyURI’ ⇒ String
’QName’ ⇒ String

’Name’ ⇒ String
’NCName’ ⇒ String
’language’ ⇒ String

’token’ ⇒ String
’NMTOKEN’ ⇒ String

’NMTOKENS’ ⇒ String
’normalizedString’ ⇒ String

ComplexType ⇒ ComplexType
... + Container + ElementRef ⇒ Field reference

Element ⇒ Field
Attribute ⇒ Field

Table 18: Transformation of XSD structure package to PIMM

PSMMSAPJCO ⇒ PIMM

SAP R3 Interface + CommunicationChannel + sRFC ⇒ CommunicationRoot + SynchronCall
SAP R3 Interface + CommunicationChannel + aRFC ⇒ CommunicationRoot + AsynchronCall
SAP R3 Interface + CommunicationChannel + tRFC ⇒ CommunicationRoot + AsynchronCall
SAP R3 Interface + CommunicationChannel + qRFC ⇒ CommunicationRoot + AsynchronCall

Table 19: Transformation of SAP R/3 communication package to PIMM

9.3.2 Relational Database Systems

The SQL queries from PSMM level have either the communication channel
JDBC or ODBC and are abstracted to SynchronCalls within the communica-
tion package at the PIMM level. Flat files have AsynchronCall at the PIMM
level.

PSMMRELDBSQLJDBC ⇒ PIMM
SQL Interface + CommunicationChannel + JDBC ⇒ CommunicationRoot + SynchronCall
SQL Interface + CommunicationChannel + ODBC ⇒ CommunicationRoot + SynchronCall
SQL Interface + CommunicationChannel + Flatfile ⇒ CommunicationRoot + AsynchronCall

Table 20: Transformation of relational database communication package to
PIMM

9.3.3 Java 2 Platform, Enterprise Edition(J2EE)

J2EE components use RMI IIOP as the CommunicationChannel. It is ab-
stracted to a SynchronCall at the PIMM level.

77

J2EE ⇒ PIMM
J2EE + RMI IIOP ⇒ CommunicationRoot + SynchronCall

Table 21: Transformation of J2EE communication package to PIMM

9.3.4 Web Services

The Web services metamodel differentiates between MessageExchangePatterns
as part of the communication package. Every pattern belongs to exact one
Operation. Those patterns are general enough to be part of the PIMM. The
transformation rules are given in Table 22.

PSMMWSDL ⇒ PIMM
Operation + ⇒ CommunicationRoot +

...InOnly ⇒ ...InOnly
...RobustInOnly ⇒ ...RobustInOnly

...InOut ⇒ ...InOut
...InOptionalOut ⇒ ...InOptionalOut

...OutOnly ⇒ ...OutOnly
...RobustOutOnly ⇒ ...RobustOutOnly

...OutIn ⇒ ...OutIn
...OutOptionalIn ⇒ ...OutOptionalIn

Table 22: Transformation of Web services communication package to PIMM

9.3.5 Extensible Markup Language (XML)

The XML metamodel differentiates between three AccessPatterns, each repre-
sents a container for XML-based data: (1) XML wrapped by an Email, (2) XML
accessible by web server and (3) file-based XML. Transformations are given in
Table 23.

XML ⇒ PIMM
CommunicationRoot + EmailBoxAccess ⇒ CommunicationRoot + SynchronCall

CommunicationRoot + WebAccess ⇒ CommunicationRoot + SynchronCall
CommunicationRoot + FileAccess ⇒ CommunicationRoot + SynchronCall

Table 23: Transformation of XML communication package to PIMM

9.4 Semantic Package Transformations

9.4.1 SAP R/3

The annotations (AnnotatableElement) of ImportParameter, ExportParameter
and Segment elements are abstracted to annotations of ImportParameter, Export
Parameter and DocumentElement elements at the PIMM level. The annotations
(AnnotatableFunction) of the elements SAP R/3 Interface and Method are ab-
stracted to annotations of IEModule and FunctionInterface.

78

9.4.2 Relational Database Systems

The annotations (AnnotatableElement) of OutputParameter and InputParameter
elements are abstracted to annotations of ImportParameter and ExportParameter
at the PIMM level. The annotations (AnnotatableFunction) of the element
SQL Interface is abstracted to annotations of FunctionInterface on PIMM
level.

9.4.3 Java 2 Platform, Enterprise Edition(J2EE)

The annotations (AnnotatableElement) of ImportParameter, Export Parameter,
Field of ComplexType and CollectionElements of Collections are abstracted
to annotations of ImportParameter, ExportParameter, Fields of ComplexTypes
and ListElements of AbstractCollections at the PIMM level.

9.4.4 Web Services

The annotations (AnnotatableElement) of ImportParameter, ExportParameter,
FaultParameter, Message and MessagePart are abstracted to annotations of
ImportParameter, ExportParameter and Fields. The annotations (Annotat-
ableElement) of Operations are abstracted to annotations of FunctionInterfaces.

9.4.5 XSD Lite

The annotations (AnnotatableElement) of Attribute and Element are ab-
stracted to annotations of Fields.

9.5 Transformation Examples

9.5.1 SAP R/3

The example shows exemplary the transformation of the PSM model from chap-
ter 3.1.5 to the PIM level (see figure 62).

9.5.2 Relational Database Systems

The example shows exemplary the transformation of the PSM model from chap-
ter 3.2.5 to the PIM level (see figure 63).

9.5.3 Java 2 Platform, Enterprise Edition(J2EE)

The example shows exemplary the transformation of the PSM model from chap-
ter 3.3.5 to the PIM level (see figure 64).

9.5.4 Web Services

In figure 65 the example web service from chapter 3.4.5 is transformed to the
PIM level.

79

9.5.5 Extensible Markup Language (XML)

The XML-to-PIM transformation uses the structure rules from the Web service-
to-PIM transformation (figure 65). These structure rules based on the shared
XSDlite metamodel, which is used by the WSDL and the XML metamodel.
Therefore additional XML transformation example is not provided here.

}

}

{

{
{
{

Figure 62: SAP R/3 transformation example

80

Figure 63: Relational database transformation example

81

}

{
{

}
Figure 64: J2EE transformation example

Figure 65: Web services transformation example

82

10 Summary

This technical report summarizes metamodels and transformations developed
in the BIZYCLE project. In Chapter 1 basic information about the project
are given, placing subsequent work in the context of model-based software
integration. Chapter 2 provides information about computation independent
metamodel, which is used for modeling of integration business processes. In
Chapter 3 an overview of platform specific models is performed, including fol-
lowing platforms/systems: SAP R/3, relational databases, J2EE components,
Web services and flat XML files. Chapter 4 introduces platform independent
metamodel, which serves as a common abstraction level at which integration
conflict analysis process can be performed. Semantics is crucial issue in soft-
ware integration, therefore Chapters 5 and 6 propose a method for modeling
of semantic knowledge (semantic metamodel) and semantic annotation (anno-
tation metamodel) of integration business processes as well as platform specific
interface descriptions. Property metamodel, presented in Chapter 7 enables
modeling of integration specific non-functional properties, such as availability,
reliability or security. Finally, the connector metamodel (Chapter 8) uses Enter-
prise Application Integration (EAI) patterns to capture structure and behavior
of the connector component that serves as a mediator between systems targeted
for integration.
Chapter 9 focuses on model transformations, which are an essential part of
model-based integration process. Model transformations, that is, abstractions
from platform specific (PSM) to platform independent (PIM) level are described
in detail for all proposed metamodels, as they serve as the basis for the auto-
mated conflict analysis process.

83

References

[1] W3c web services description language(wsdl) 1.1, 2001.
http://www.w3.org/TR/wsdl.

[2] ATL: Atlas Transformation Language User Manual. http://www.eclipse.
org/m2m/atl/doc/ATL User Manual[v0.7].pdf, 2006.

[3] W3c xml schema, 2008. http://www.w3.org/XML/Schema.

[4] H. Agt, G. Bauhoff, M. Cartsburg, D. Kumpe, R. Kutsche, and N. Mi-
lanovic. Metamodeling Foundation for Software and Data Integration. In
Proc. ISTA, 2009.

[5] H. Agt, J. Widiker, G. Bauhoff, R.-D. Kutsche, and N. Milanovic. Model-
based semantic conflict analysis for software- and data-integration scenar-
ios. Technical Report 2009/7, Technische Universität Berlin, 2009.

[6] atl. Atlas transformation language (atl).
http://www.eclipse.org/m2m/atl/.

[7] N. Boudjlida and H. Panetto. Annotation of enterprise models for interop-
erability purposes. In Proceedings of the IWAISE 2008, 2008.

[8] EMF. Eclipse Modeling Framework. ?, 2008.

[9] M. D. D. Fabro, J. Bézivin, F. Jouault, E.Breton, and G. Gueltas. AMW:
a generic model weaver. In Proceedings of IDM05, 2005.

[10] T. Hildenbr and R. Gitzel. A taxonomy of metamodel hierarchies.

[11] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[12] A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Gora-
nov. Semantic annotation, indexing, and retrieval. In International Se-
mantic Web Conference, 2003.

[13] T. Kühne. Matters of (meta-)modeling. Software and System Modeling,
5(4):369–385, 2006.

[14] R. Kutsche and N. Milanovic. (Meta-)Models, Tools and Infrastructures
for Business Application Integration. In UNISCON 2008. Springer Verlag,
2008.

[15] R. Kutsche, N. Milanovic, G. Bauhoff, T. Baum, M. Cartsburg, D. Kumpe,
and J. Widiker. BIZYCLE: Model-based Interoperability Platform for Soft-
ware and Data Integration. In Proceedings of the MDTPI at ECMDA, 2008.

[16] N. Milanovic, M. Cartsburg, R. Kutsche, J. Widiker, and F. Kschonsak.
Model-based Interoperability of Heterogeneous Information Systems: An
Industrial Case Study. In Proceedings ECMDA, 2009.

84

[17] N. Milanovic, R. Kutsche, T. Baum, M. Cartsburg, H. Elmasgunes,
M. Pohl, and J. Widiker. Model & Metamodel, Metadata and Docu-
ment Repository for Software and Data Integration. In Proceedings of the
ACM/IEEE MODELS, 2008.

[18] E. Pulier and H. Taylor. Understanding Enterprise SOA. Manning, 2006.

[19] L. Reeve and H. Han. Survey of semantic annotation platforms. In Pro-
ceedings of the 2005 ACM symposium on Applied computing, NY, USA,
2005. ACM.

[20] M. Shtelma, M. Cartsburg, and N. Milanovic. Executable Domain Specific
Language for Message-based System Integration. In Proc. MoDELS, 2009.

[21] H. Wada, E. M. M. Babu, A. Malinowski, J. Suzuki, and K. Oba. Design
and implementation of the matilda distributed uml virtual machine. In
Proc. of the 10th IASTED SEA Conference, 2006.

[22] H. Wada and J. Suzuki. Modeling turnpike: A model-driven framework
for domain-specific software development. In Proc. of the Doctoral Sym-
posium at the 8th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MoDELS/UML 2005), 2005.

85

