
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Model-based Semantic Conflict Analysis
for Software- and Data-Integration
Scenarios

Bericht-Nr. 2009 – 07

Henning Agt, Gregor Bauhoff, Jürgen Widiker,
Ralf-D. Kutsche, Nikola Milanovic

ISSN 1436-9915

Model-based Semantic Conflict Analysis for

Software- and Data-integration Scenarios

Henning Agt, Gregor Bauhoff, Jürgen Widiker,
Ralf Kutsche, Nikola Milanovic
Technische Universität Berlin

Fakultät IV (Elektrotechnik und Informatik)
Fachgebiet Datenbanksysteme und Informationsmanagement

Einsteinufer. 17
D-10587 Berlin

{hagt,gbauhoff,jwidiker,rkutsche,nmilanov}@cs.tu-berlin.de
Homepage: http://www.dima.tu-berlin.de

March 5, 2009

Abstract

The semantic conflict analysis, which is the focus of this technical
report, is an approach to automate various design-time verification activ-
ities which can be applied during software- or data-integration processes.
Specifically, the aspects of semantic matching of business processes and
the underlying IT infrastructure as well as of technical aspects of the
composite heterogeneous systems will be investigated. The report is part
of the BIZYCLE project, which examines applicability of model-based
methods, technologies and tools to the large-scale industrial software and
data integration scenarios. The semantic conflict analysis is thus part
of the overall BIZYCLE conflict analysis process, comprising of seman-
tic, structural, communication, behavior and property analysis, aiming at
facilitating and improving standard integration practice. Therefore, the
project framework will be briefly introduced first, followed by the detailed
semantic annotation and conflict analysis descriptions, and further backed
up with the semantic conflict analysis motivation/illustration scenario.

1

Contents

1 Introduction into BIZYCLE 4
1.1 BIZYCLE Metamodels . 4

1.1.1 Computation Independent Metamodel 5
1.1.2 Views of the Computation Independent Model 7
1.1.3 Platform Specific Metamodels 9
1.1.4 Platform Independent Metamodel 9
1.1.5 Semantic Metamodel . 12
1.1.6 Connector Metamodel . 12
1.1.7 Mapping Metamodel . 13

1.2 Conflict Analysis within the BIZYCLE Integration Process . . . 14

2 Related work 16

3 Motivating scenario 18
3.1 Scenario 1: Transfer of a simple Business Object 19
3.2 Scenario 1a: Mapping of Business Components to Integratable

Elements . 20
3.3 Scenario 2: Transfer of a structured Business Object 23
3.4 Scenario 2.1: Interface call order 25
3.5 Scenario 2.2: Interface choice . 28
3.6 Scenario 2.3: Deadlock recognition 30
3.7 Scenario 2.4: Interface call loop 32
3.8 Scenario 3: Integrating a Domain Function 35
3.9 Scenario 4: Integrating a Connector Function 36
3.10 Scenario 5: Multiple Annotations 38
3.11 Scenario 6: Integrating a Business Function 40
3.12 Scenario 7: Simultaneous Annotation of Business Objects and

Business Functions . 42
3.13 Summary of the Semantic Conflict Analysis Requirements 45

4 Conflict Analysis Algorithm 47
4.1 Conflict Types . 47
4.2 Overview of the Conflict Analysis Algorithm 48

5 Semantic Annotation 51
5.1 Data-oriented Annotations . 52

5.1.1 CIM Level Annotations 52
5.1.2 PSM Level Annotations 52
5.1.3 PIM Level Annotations 54

5.2 Function-oriented Annotations 55
5.3 Logical Operators . 57
5.4 Applications of Semantic Annotation 57

5.4.1 Single Representation Annotations 58
5.4.2 Multiple Representation Annotation 58

2

5.4.3 Containment Annotation 59
5.4.4 Alternative Annotation 60
5.4.5 Compositional Annotation 60
5.4.6 Multilevel Annotation . 61

6 Semantic Conflict Analysis 63
6.1 Algorithm Description . 63

6.1.1 Algorithm Overview . 64
6.1.2 Get Business Object Import and Export and Business

Function Requirements 66
6.1.3 Create Business Object Requirement Mappings 67
6.1.4 Create Business Function Requirement Mappings 68
6.1.5 Find PIM Elements . 69
6.1.6 Build PIM Element Result List 71
6.1.7 Get Additional Interface Element Requirements 72
6.1.8 Create Import Element Requirement Mappings 74
6.1.9 Semantic Reasoning . 75
6.1.10 Find PIM Elements with Semantic Reasoning 76
6.1.11 Verify Business Object Requirement Mappings against

Business Function Requirement Mappings 77
6.2 Conflict Analysis Results Representation 79
6.3 Conflict Analysis Results Example 81

6.3.1 Scenario 1 results: Simple requirement mappings 82
6.3.2 Scenario 2 results: Interface element context 83
6.3.3 Scenario 3 results: Connector mapping 84

6.4 Semantic Conflict Analysis Implementation 87
6.4.1 Prolog Engine . 87
6.4.2 Ecore-to-Prolog Transformation 87
6.4.3 Knowledge Base & Rule Base 88

7 Summary 90

3

1 Introduction into BIZYCLE

This report documents part of the BIZYCLE interoperability platform, a joint
industry/academy R&D effort to investigate in large-scale the potential of model-
based software and data integration methodologies, tool support and practical
applicability for different industrial domains [36, 37, 41]. The consortium con-
sists of six industrial partners and academia and is part of the program of
the German government, the Berlin-Brandenburg Regional Business Initiative
BIZYCLE (www.bizycle.de). The long-term goal is to create a model-based
tool generation and interoperability platform, in order to allow for improved
and partially automated processes in software component and data integration.
These integration tasks are performed by experienced software engineers and
application experts, manually programming the connectors i.e. the glue among
software components or (sub)systems. This requires domain-specific as well as
integration requirements’ analysis skills. It is a very expensive procedure, es-
timated between 50 and 80 per cent of the overall IT investments (see e.g.,
[44]). In order to reduce this cost factor, the BIZYCLE initiative develops a
methodology, tools and metatools for semi-automated integration according to
the MDA paradigm.

1.1 BIZYCLE Metamodels

With Model Driven Architecture (MDA) and Model Driven Development (MDD),
the Object Management Group (OMG) has defined a standard process of mod-
eling software systems by a top-down approach on three different levels of ab-
straction: computation independent (CIM), platform independent (PIM) and
platform specific (PSM). BIZYCLE takes advantage of this approach and sup-
ports all three model levels (CIM, PIM, PSM) for the purpose of developing a
process for integration of software artifacts, components, systems or data (here-
inafter referred to as artifacts).

Integration with BIZYCLE starts on CIM level specifying the integration
process and requirements in terms of an integration scenario. Unlike the MDA
approach (CIM to PIM to PSM), the description of software artifacts themselves
starts on PSM level. The artifacts are treated as black boxes and only their
interfaces are taken into account. The artifacts are not initially described on
PIM level because they already exist and cannot be modified. Platform specific
descriptions of different artifacts are transformed to PIM level for comparison
and composition conflict analysis. BIZYCLE offers a set of metamodels on each
of the MDA levels. Table 1 gives an overview of the BIZYCLE metamodels.

The Computation Independent Metamodel (CIMM) offers elements for the
description of an integration scenario with its artifacts, processes and abstract
data exchanges.

Various Platform Specific Metamodels (PSMM) are used to describe homo-
geneous platform specific interface families, e.g., SQL database interfaces, Web
Services, SAP R/3 BAPI and IDOC interfaces, XML files, J2EE and .NET
components.

4

Level Purpose Metamodels Multilevel
Metamodels

Computation independent Business scenario CIMM

Platform independent Conflict analysis PIMM SM
M

,
A

M
M

Platform specific Technical interfaces PSMMs B
M

M
,

P
M

M

Table 1: BIZYCLE metamodel overview

The Platform Independent Metamodel (PIMM) represents the common basis
for interface description of the integration artifacts. Model instances of that
metamodel are created using model-to-model transformation of PSMs, currently
realized with ATLAS transformation language (ATL)[1].

General properties and attributes of the integration artifacts are organized
in multilevel metamodels to be able to use them on all three MDA levels. With
the Semantic Metamodel (SMM) it is possible to build an ontology of the in-
tegration domain. The knowledge contained in the ontology is used to declare
the meaning of the artifact’s details on all three MDA levels. For behavioral
and non-functional properties of the artifacts, such as call order and quality
of service, the Behavior Metamodel (BMM) and Property Metamodel (PMM)
were defined.

The multilevel metamodels are linked to the metamodels of the CIM, PIM
and PSM level. Content of the semantic model can be shared between different
levels. The Annotation Metamodel (AMM) realizes the linkage between all
levels of abstraction.

Interface descriptions on PSM and PIM level can be divided into five cate-
gories:

• semantic annotation
• behavioral description
• (non-functional) properties
• data structure and data types
• communication properties

As the first three categories are already shared between PSM and PIM level
the transformation from PSM to PIM only concerns structure and communica-
tion.

1.1.1 Computation Independent Metamodel

The computation independent metamodel (CIMM) describes an integration sce-
nario from an abstract business perspective. The main purpose of modeling a
scenario at computation independent model (CIM) level is to define integration

5

requirements. The CIMM provides means to name artifacts that are involved
in the integration, to model the process of the integration in terms of activities
that shall be performed by them and transitions between them as well as struc-
tural and data exchange aspects, regardless of the technical system’s details.
Figure 1 shows the main CIMM metaclasses.

+name : String

BusinessComponent BusinessConnector

+name : String

IntegrationScenario

+name : String

ActivityNode

+name : String

ActivityEdge out+outgoingEdge0..* +sourceNode 1

in +targetNode 1+incomingEdge0..*

connects

+component2..* +connector0..*

includes
+components

1..*

+scenario

1

includedEdges

+edge0..*

+component 1

includedNodes

+node 1..*

+component1

Figure 1: CIMM – Basic metaclasses for artifact and process modeling

IntegrationScenario is basically used as root model element because of
implementation with Ecore, that make use of containment hierarchies in tree-
based editors. A BusinessComponent represents software or data artifact, that
is used in the integration. A special business component is the BusinessConnec-
tor, that stands for the interconnection between different systems. It handles
the interoperability of the artifacts, that cannot be performed by themselves.
ActivityNode and ActivityEdge are used to express the integration process
(flow).

Figure 2 depicts different activities that can be performed by a business
component. ControlNodes are used to determine the beginning and the end
of an integration scenario. ExportInterface and ImportInterface are used
to model component interaction by data transfer or functional coupling. Using
the InternalComponentAction it is possible to express activities that are not
relevant to data flow but are helpful for understanding the overall scenario
context.

The metamodel also defines the metaclass BusinessFunction that repre-
sents functionality of the integrated artifacts. In the scope of an integration
scenario it processes incoming data or performs a task needed by another arti-
fact. The business function is used inside of business components while Connec-
torFunction are part of business connectors. They can be used by the business
architect to predefine connector functionality. The Figure 2 shows an excerpt
from the abstract Enterprise Application Integration (EAI) patterns [29]. The
Aggregator or Filter for instance perform data transformation tasks, Timer
is used as a control function.

The CIMM defines two different kinds of edges (shown in figure 3), that
can connect activities of business components. The purpose of the metaclass
ControlFlow is the transition from one activity to another inside an artifact
though being part of it. Connection instead models the relationship between

6

InternalComponentAction

+name : String

BusinessComponent

ConnectorFunction

+description : String

BusinessFunctionBusinessInterface

ImportInterface ExportInterface

+name : String

ActivityNode

ControlNode

Transformer Aggregator

InitialNode FinalNode

EnricherSplitterRouter TimerFilter

includedNodes

+node

1..*

+component

1

Figure 2: CIMM - Activities of BusinessComponents

different components and is responsible for the interconnection/communication
tasks. Therefore it is part of a connector.

+name : String

BusinessComponent

+name : String

ActivityEdge

Connection

ControlFlow

includedEdges

+edge

0..*

+component

1

Figure 3: CIMM - ActivityEdges

Finally the CIMM defines the BusinessObject in order to describe data
exchanged by the artifacts. Figure 4 shows the complete Computation Inde-
pendent Metamodel including all relations of the business object to the other
metaclasses. Business objects are produced or consumed by business functions.
They are transported via connections from one artifact through an export in-
terface to another artifact over an import interface. Furthermore it is possible
to structure business objects hierarchically.

1.1.2 Views of the Computation Independent Model

The CIMM allows to model various aspects of an integration scenario, e. g.,
the flow and data-oriented aspects. With regard to the usability of a modeling
module of the BIZYCLE model-based integration framework (MBIF), an inte-
gration scenario should not be presented on the whole to the user. We identified
five potential graphical views on a CIM, which are described in the following.
Table 2 gives an overview of the proposed views.

Modeling of an integration scenario starts with the Flow View that includes
the complete process of the scenario. The visualization is similar to the UML
activity diagram. It visualizes the instantiated BusinessComponents as swim-

7

InternalComponentAction

+name : String

BusinessComponent

ConnectorFunction

BusinessConnector

+name : String

IntegrationScenario

BusinessInterface

+description : String

BusinessFunction

+name : String

BusinessObject

ImportInterface ExportInterface

ControlNode

+name : String

ActivityNode

+name : String

ActivityEdge

Transformer

ControlFlow

Connection

Aggregator

InitialNode FinalNode

EnricherSplitterRouter TimerFilter

transports

+businessObject
1..*

+connection0..*

in +targetNode 1+incomingEdge0..*

out+outgoingEdge0..* +sourceNode 1

connects

+component2..* +connector0..*

includes

+businessObject

1..*

+scenario

1

includedEdges

+edge0..*

+component 1

includedNodes

+node 1..*

+component1

input

+inputBO
0..*

+targetFunction0..*

handles

+businessObject

1..*

+connector0..*

includes

+components
1..*

+scenario

1

output

+outputBO
0..*

+sourceFunction0..*

consistsOf

+part

0..*

+whole
0..1

Figure 4: CIMM - Complete Metamodel

lanes, ActivityNodes with different shapes being part of the components and
ControlFlow as arrows between nodes inside the swimlanes as well as Connec-
tions as arrows between BusinessInterfaces of different components.

The Object View is responsible for the hierarchical modeling of Business-
Objects refinements. Therefore only instances of this metaclass and their
consistsOf-relations are shown.

The Connection View hides all internal activities of components and shows
only data transport characteristics of the scenario. That includes Business-
Components with their BusinessInterfaces and Connections and additionally
the root BusinessObjects, that are exchanged among them. The Business-
Objects are associated to the Connections that transport them.

The Function View only shows BusinessFunctions and sub-classes includ-
ing ConnectorFunctions as well as the BusinessObjects, that are input and
output of the functions. The view shows the relevant business data flow de-
scribing how BusinessObjects are being processed and transformed into each
other.

The Semantic View is used to semantically describe the integration sce-
nario. Additional semantic knowledge is added in form of semantic annotations
to annotatable metaclasses (BusinessObject and BusinessFunction). Both
business data (objects) and functions can be semantically enriched at this level.

8

View Purpose

Flow View Flow of the integration scenario
Object View Hierarchical structure of the business objects
Connection View Connectivity and data transport
Function View Business function dependencies
Semantic View Semantic annotation of the scenario

Table 2: Computation Independent Model Views

1.1.3 Platform Specific Metamodels

At the platform specific level, BIZYCLE provides several platform specific meta-
models (PSMMs) to describe technical properties of the software artifacts that
are subject to the integration. With these metamodels it is possible to qual-
ify all communicational and structural facets of the interfaces offered by each
artifact. We currently support the following six types of artifacts at PSM level:

• SAP R3 JCO

• Microsoft .NET components

• J2EE EJB 2.1 components

• SQL based relational database management systems

• XML files

• Web services

Every PSM represents a description of a set of platform specific interfaces
which is modeled by the application specialist. Modeling includes the semanti-
cal annotation of business objects which are pass to/from interfaces at runtime
(e.g., import/export parameters). These annotations are required for the se-
mantical Conflict Analysis at PIM level. Based on the PSMs appropriate client
code can be generated which is able to call the given interfaces at runtime.
This code represents the application endpoint, which wraps and hides differ-
ent aspects of communication problems. Conflict analysis therefore, does not
have to care about technical communication details concerning standalone in-
terface calls. Rather, communication properties at PSM level are captured to
recognize conflicts at PIM level, possibly caused due to combination of different
communication protocols within the integration scenario.

More information about different PSMMs can be found in [35].

1.1.4 Platform Independent Metamodel

The purpose of the platform independent metamodel (PIMM) is to facilitate sys-
tem interoperability by abstracting all platform specific heterogeneous interface

9

details. The abstraction process is realized by a PSM-to-PIM transformation
using ATL [1]. For every PSMM there exists a set of transformation rules which
translates the PSM into the common abstraction layer, the PIM. As stated in
[38] the PIMM facilitates integration of heterogeneous interfaces. At the PIM
level it is possible to represent different interface details on a common basis.

At the PIM level an Interface represents a single system gateway which is
able to handle data as input and/or output in one single step. Hence PIMM-
Interfaces represent an abstraction for all platform specific operations, methods,
functions, files etc. PIMM distinguishes between three interface types: Func-
tionInterface, MethodInterface and DocumentInterface. The first repre-
sents a non-object-oriented interface, the second an object-oriented interface
and the last a data structure-based interface. Every interface has its own par-
ent container, the system which exposes it, modeled by IntegratableElement.
Each interface contains associations to different parts of the PIMM which will
be described in the following subsections (see basic metaclasses in Figure 5).

structure

WrappedImportParameter WrappedExportParameter

BiDirectionalParameter

WrappedParameter

FunctionParameter DocumentElement

WrappedAttribute

ImportParameter ExportParameter

TypedElement

-name : String

IntegratableElement

-name : String

DocumentInterfaceFunctionInterface

MethodInterface

IEObject

OOParameter

Interface

-name : String

OOAttribute

IEDocumentIEModul

hasAttribute

0..*

1

has

*

1

hasParameter

0..*

1hasParameter

1

0..*

deliver

0..*

1

offers

0..*

1

offers

0..*

1

isOfType

-hasTypeOf

1

-isTypeFor

0..*

has
-ooAttribute

0..*

1

hasParameter

0..*

1

isOfType

1

0..*

Figure 5: PIMM - basic metaclasses for interfaces (excerpt)

Structure and Communication: The structure part (Figure 6) includes
the common type system with the abstract super-metaclass Type and different
sub-metaclasses to express SimpleTypes (String, Number, Boolean) as well as
ComplexTypes. The abstract TypedElement represents an element with a spe-
cific meaning (semantics) and represents a value container at runtime, e.g., Im-
portParameter. A TypedElement has exactly one association to a type but vice
versa a type can belong to arbitrarily TypedElements, which means a Type can

10

be ’reused’. For each interface type, abstract sub-metaclasses of TypedElement
are provided: WrappedParameter, FunctionParameter and DocumentElement.

An interface may have its own interaction rules. These can be described
by communication patterns such as MessageExchangePatterns, or different
Call- and Event types. Knowing platform independent communication details
is essential to be able to interact with every interface in the proper way. During
communication conflict analysis, incompatible call mechanisms are detected and
fixed (as far as possible automatically).

Type

-name : String

TypedElement

-name : String

WrappedImportParameter WrappedExportParameter BiDirectionalParameter

AnnotatableElement

-description : String

Number

-minValue : Integer
-maxValue : Integer
-decimalPlaces : Integer

WrappedParameter FunctionParameter

AbstractCollection

-minCount : Integer
-maxCount : Integer

DocumentElement

PointInTime

-minValue : String
-maxValue : String
-format : String

WrappedAttribute

Field

-optional : Boolean
-exclusive : Boolean

ImportParameter ExportParameter

ForeignKey

-notNull : Boolean

String

-length : Integer
-charset : String

RegexType

-regex : String

ComplexType

SimpleType

OrderedSetOrderedBag

ListElement

PrimaryKey
MapValue

Boolean

MapKey

Opaque

Map

Bag Set

hasListElement1

hasType 10..*

linksTo 0..*1

hasField

1..*

hasKey

1

hasValue

1

Figure 6: PIMM - structure part

Property and Behavior: Non-functional properties are used to character-
ize interface capability (provided) and expectations (required) properties. The
root node PropertyRoot is responsible for including every PropertyContainer
which is derived to RequirementPC and CapabilityPC element. Every Proper-
tyElement is a child of exactly one of these two sub-metaclasses. The metaclass
QualityOfService is the upper metaclass of every QoS property and has an
association to a Metric. All metrics have the AbstractMetric as their upper
metaclass. Based on this metamodel construction every QoS can be combined
with every metric. During property conflict analysis, CapabilityPCs and Re-
quirementPCs are related to each other in order to extract incompatible process
flow graphs.

Every system which is represented by the metaclass IntegratableElement
is treated as a black box, that means all implementation details are unknown.
Even so, it is necessary to know at least the externalized behavior in order to
follow the right communication protocol at the business level. Behavior of a
component is described using OCL-inspired constraint metaclasses. There are
two different possibilities to describe behavior: define interface call orders or de-
fine parameter and function constraints (conditions between parameter values,
pre-conditions, post-conditions and invariants using abstract states).

11

1.1.5 Semantic Metamodel

The SMM defines a set of metaclasses for building semantic definitions and re-
lations in terms of an ontology. The semantic definitions are used to declare
the meaning of model elements on computation independent, platform inde-
pendent and platform specific level. Having annotated the different models on
these levels it is possible to compare integration artifacts more precisely and
identify semantically equivalent or compatible elements. In Figure 7 the SMM
metaclasses and associations are presented.

+name : String

SemanticConcept

+description : String

CustomPredicate

DefinedPredicate

DomainFunction

DomainObject

+name : String

Predicate

+name : String

Ontology

IsEquivalentTo

+name : String

Domain
Output

ListOf

Has

Input

IsA

+concept 1..*

+domain1

+predicate 0..*

+domain1
+spredicate 0..*

+subject 1 +object1

+opredicate0..*

+domains

1..*

partOf

+subDomain

0..*

+parentDomain

0..1

Figure 7: Semantic Metamodel

The Ontology can contain one or more Domains that define the area in
which semantic descriptions should be aggredated. Ontology concepts can be
DomainObject and DomainFunction. The domain object represents the knowl-
edge about data in an integration domain, while the domain function stands for
functionality representation.

Concepts are associated with Predicates. The domain objects and func-
tions are either in the role of a subject or an object. With this construct it is
possible to build semantic statements (RDF-like triples) consisting of subject,
predicate and object. The metamodel offers a few predefined predicates such
as generalization (IsA), data processing for functions (Input, Output), contain-
ment (Has), data sets(ListOf) and equivalence relationship (IsEquivalentTo).
With CustomPredicate it is possible to model other kinds of predicates.

1.1.6 Connector Metamodel

Based on the models describing the integration scenario (at the CIM, PSM and
PIM levels) and results of the conflict analysis, the connector component model
and code are generated. A connector is an automatically generated compo-
nent, which is used to overcome all discovered conflicts and enable technical,
semantical and business interoperation. It is based on the principles of message
oriented middleware (MOM), and its metamodel is accordingly based on the
message passing (Figure 8).

The connector generation starts with the ChannelAdapter which comprises
ApplicationEndpoint and MessageGateway. ApplicationEndpoint implements

12

Message
Gateway

PIMM Interface

Application
Endpoint

Channel
Adapter

Parameter

Connector

Export
Parameter

Import
Parameter

Message
Processor

Message

Channel

connectsTo -interface

creates

creates

deserializes

transports

generatestarget

target

creates

source

source

serializes

integrates

-interface

0..*

has

receives

Figure 8: Connector Metamodel

the technical interoperability, and is able to call remote system interfaces. It
passes export parameters to the MessageGateway, which serializes them into
Message. In the other direction, MessageGateway deserializes a message and
passes it to the ApplicationEndpoint. Messages are further transported by
Channels which can be either 1-1 channels or publish/subscribe. Message-
Processors perform conflict resolution by executing aggregation, routing, trans-
formation, enrichment etc. functions. Application endpoints can be generated
using standard code generation methods or using model interpretation. Core
connector logic (Channels and Message Processors) are interpreted based on the
UML Action Semantics description.

1.1.7 Mapping Metamodel

The Mapping Metamodel (MMM) couples the business components defined in
CIM with integratable elements described in PIM. The purpose of MMM is
mapping of business requirements to the real systems and components which
are considered to be parts of integrated solution. Thus, the instance of MMM
is dependent on the integration scenario. The mapping can be performed on
two levels. One business component is mapped either to the entire integratable
elements (at least one) or to the particular interfaces of integratable elements (at
least one) (Figure 9). Within an integration scenario one integratable element
or one interface can be mapped to multiple business components.

Since the mapping metamodel relies on the PIMM the instances of MMM are
created after the PSM-to-PIM transformation and before the conflict analysis
process has started. Alternatively, linking a business component the user may
use MMM instances created in previous integration projects which reference the
same sets of integratable elements and interfaces.

13

pimm

IntegratableElement

-name : String

Interface

-name : String

mmm

BCMapping

-name : String [1]

cimm

BusinessComponent

-name : String

isImplementedByInterfaces 0..*
0..*

isImplementedByIEs 0..*

0..*

represents1 0..1

Figure 9: Mapping Metamodel

1.2 Conflict Analysis within the BIZYCLE Integration
Process

Integrating heterogeneous components is burdened with recurring task, such as
understanding the business semantics concerning existing technical interfaces,
combining and transforming different data types, coupling conflicting functional
behavior, bridging incompatible communication mechanisms, or orchestrating
complex call order behavior.

Some of these tasks might be processed (semi-)automatically. Combined
with a straightforward engineering process integration scenarios could be re-
alized more efficiently. BIZYCLE differs between design-time and run-time
environment. Both modules represent the BIZYCLE interoperability platform.

Identify components
to integrate

Refine integration scenario

Identify business process
Transform PSM to PIM

Connector code
generation

Describe interfaces

Describe business
connector scenario

Identify business
connectors

Code generation

Conflict analysis

Connector PSM

ConnectorPIM

Conflict Model

Interface PSM

Interface PIM

Business
Connector
View (CIM)

Flow view
(CIM)

conflictsRemained

noConflicts

Figure 10: BIZYCLE integration process

The BIZYCLE integration process describes a methodology and tool-based
framework which covers various integration activities, both at design time and
at run time. The integration process (Figure 10) can be coarsely divided into

14

following five steps:

1. define integration scenario at business level (CIM),

2. describe existing component interfaces at platform specific level (PSM),

3. abstract all interface descriptions to a common platform independent level
(PIM),

4. process conflict analysis based on the abstracted interface descriptions and
defined integration scenario including step by step conflict solution,

5. generate connector code and deploy to the BIZYCLE runtime environ-
ment.

In the remainder of this document, the conflict analysis and specifically the
semantic aspects of this process, will be investigated and described in more
details. We will first examine related work in the field of semantic Web and se-
mantic reasoning, propose a motivating scenario, briefly cover the entire conflict
analysis algorithm and then proceed to describe the semantic conflict analysis.
The annotations will be explained and then the conflict analysis algorithm itself.
The document concludes with an analysis example and prototypical implemen-
tation.

15

2 Related work

The term semantic conflict originated and still has a widespread use in the
research domain of schema integration for heterogeneous database systems. It is
used in the context of semantic conflict detection and corresponding resolution.
The understanding of the semantic conflict analysis changed over time to include
many types of compositional conflicts between any other heterogeneous data-
or function-providing system.

In [42] a classification of semantic conflicts is described along the three di-
mensions of naming, abstraction and level of heterogeneity. It emphasizes a need
of semantic reconciliation between two communication parties during a static
integration or a dynamic integration approach. The order of detected semantic
conflicts depends on the available subset of full schematic and semantic knowl-
edge. Examples of semantic conflicts are: structural difference, representational
difference, mismatched domains, or naming conflicts.

In [25] a formal characterization and reconstruction of the context inter-
change framework (COIN) strategy is given. COIN represents a mediated data
access strategy in which semantic conflicts among heterogeneous systems are
detected and reconciled by a context mediator through comparison of contexts
associated with any two systems engaged in data exchange. Based on the logical
formalism of COIN, data semantics of distinct context can be used for reasoning
about semantic disparities in heterogeneous systems. Semantic conflicts occur
whenever two context do not use the same interpretation of the information.

A thorough survey about ontology-based intelligent information integration
is given in [49]. It analyzes about 25 approaches including including SIMS [18],
TSIMMIS [21], OBSERVER, CARNOT, Infosleuth, KRAFT, PICSEL, DWQ,
Ontobroker [24] , SHOE and others with respect to the role and use of ontologies.
It emphasizes the need of interoperability on technical and information levels.
As stated in [48] interoperability could be a key application for ontologies. They
can be used for the explication of implicit and hidden knowledge to overcome the
problem of semantic heterogeneity and finding suitable information sources, as
part of the information retrieval and information filtering discipline. Wache et
al. summarized in [49] a striking lack of sophisticated methodologies supporting
development and use of ontologies. Furthermore they suggest to develop a
more general methodology that includes the analysis of the integration task and
support of the process of defining the role of ontologies with respect to these
requirements.

Web Ontology Language (OWL)[15] is promoted as a basis for realizing
different ontologies. Li and Ling [39] used it to summarize seven cases in which
semantic conflicts can be encountered and resolved by an appropriate semantic
conflict and resolution algorithm.

Most of the existing semantic reasoning tools rely on ontologies represented
in OWL. Pellet [45] is a description logic reasoner which supports the origi-
nal OWL DL specification. Similarly, Racer [26] provides support for ontology
languages OWL, DAML+OIL, and RDF. The knowledge base can be queried
using the query language nRQL [27]. Both reasoners implement Tableau al-

16

gorithms (ABox and TBox) [19]. FaCT++ [46] is a description logic reasoner
for OWL DL which augments the Tableau algorithms with optimization tech-
niques such as preprocessing optimization, satisfiability checking optimization,
and classification optimization.

OWLIM [33] is a semantic repository based on the rule-based reasoning
engine TRREE [12], which supports RDF(S), OWL DLP, and OWL Horst and
performs the forward chaining. Bossam [30] is a RETE-based rule engine for
the Semantic Web, which enables reasoning (forward chaining) over RuleML
rules, as well as ontologies described with OWL or SWRL (Semantic Web Rule
Language based on combination of OWL DL with the sublanguage of RML).
Hoolet [5] implements an OWL DL reasoner that uses WonderWeb OWL API
[8] for parsing and managing OWL documents and Vampire [47] first oder prover
as inference engine.

Jena [6] and Sesame [31] are open source RDF frameworks supporting infer-
encing and querying over RDF(S). Jena also provides support for OWL reason-
ing. Ontobroker [24] and F-OWL [50] use the frame-based approach to accom-
plish the semantic reasoning with ontologies represented in OWL. METEOR-S
[43] is a framework for semi-automatical Web service markup with ontologies
expressed in OWL. It offers several algorithms for annotation of WSDL files
and their respective matching against existing ontologies. Domain ontologies
are used to categorize services into domains.

The datalog-driven reasoner KAON2 [7] provides an API for managing on-
tologies expressed in OWL DL, SWRL [10], and F-Logic [32]. FLORA-2 [4]
is a dialect of F-Logic with numerous extensions and provides its implementa-
tion based on XSB [16], a variant of the Prolog that includes HiLog [22] for
higher-order programming. Reasoners are also included in various frameworks
and systems as built-in components, e. g., Apollo [40] or AllegroGraph [2].

Besides XSB, there are various Prolog implementations which can be used
as basis for reasoning tools depending on tool requirements (e. g., SWI-Prolog
[9], BProlog [3], Visual Prolog [14], tuProlog [13], YAProlog [17]). As standard
packages SWI-Prolog provides the Java Interface JPL and the Semantic Web Li-
brary for manipulating RDF documents which is used within the Prolog library
Thea [11] to support the OWL documents.

17

3 Motivating scenario

Several motivating scenarios will be introduced in this section, with the purpose
to be able to identify and formulate requirements that the semantic conflict
analysis algorithm has to fulfill. The scenarios are taken from the E-commerce
domain. Hence the corresponding domain ontology includes concepts such
as Customer, Address, City, TurnoverOfADay or BusinessFunctions such as
NameConcatenation (see figure 11).

TurnoverOfLastDayForASetOfCustomers

ValueAddedTaxRateDetermination

TurnoverOfLastDayOfACustomer

GrossTurnoverCalculation

DomesticCustomerList

GrossTurnover InvoiceCountryValueAddedTaxRateNetTurnover

CustomerListWith
TurnoverThisYear

NameConcatenation

TurnoverOfLastDayTurnoverOfADay

CustomerName

CustomerList

Email Address

CustomerCity

Customer
FirstName

Customer

CityList

Customer
LastName

Name

City

FirstNameLastName

Turnover

ID

isA

isIdentifiedBy

has

input

has

input

input

has
has

isA

listOf

hashas

hashas

isA

has has

output

ouput

isA

listOf

isA

isA

isA

input

isA

isA

output

isAisA

input

has

isA

Figure 11: Ontology of the Motivating scenario

Motivating scenarios have varying complexity, where it is increased from
one scenario to another. Each scenario has at least one variant without an
integration conflict and further variants which cause different conflict types.
The conflict analysis algorithm will be described later based on the scenarios
(denoted by a number) and their variants (denoted by a letter). Every variant
will be described with the expected results that the conflict analysis algorithm is
expected to deliver. Scenarios are described at the platform independent (PIM)
level, so terms of this level will be used.

18

3.1 Scenario 1: Transfer of a simple Business Object

The first scenario represents a minimal base for further discussion, consisting of
two BusinessComponents (a Webshop and an ERP system), each with only one
FunctionalInterface. The integration scenario, which describes the business
requirements, is to transfer the sum of all sales made during the last day from
the Webshop system to the ERP system. At the CIM level (see figure 12) this
sum is modeled as a BusinessObject called Sum of sales and semantically
annotated with the concept TurnoverOfLastDay.

Export
turnover of

last day

Webshop

Import
turnover of

last day

ERP System

Sum of sales

TurnoverOfLastDay

Figure 12: Scenario 1 - CIM level

At the PIM level (Figure 13), business requirements are supposed to be real-
ized with two systems, Webshop and ERP. The Webshop has a function interface
called sumOfSalesLastDay which delivers an export parameter sum, annotated
with the concept TurnoverOfLastDay. The ERP system has another function in-
terface saveSumOfSalesLastDay, which accepts an import parameter turnover,
also annotated with the concept TurnoverOfLastDay.

We distinguish five possible variants of this scenario.
Variant A: All parameters and business objects are semantically annotated.

The expected results of the semantic conflict analysis process are:

• Business object Sum of sales (CIM) is mapped to the export parameter
Webshop.sumOfSalesLastDay.sum (PIM).

• Business object Sum of sales (CIM) is mapped to the import parameter
ERP.saveSumOfSalesLastDay.turnover (PIM).

Variant B: The business object Sum of sales is not semantically annotated.
The expected results of the semantic conflict analysis process are:

• Conflict analysis cannot map neither export parameter nor import para-
meter to the business object ”Sum of sales”, hence an integration specialist
has to map it by hand (manually).

19

 : FunctionInterface

name = "saveSumOfSalesLastDay"
 : FunctionInterface

name = "sumOfSalesLastDay"

 : ExportParameter

name = "sum"

 : IEModul

name = "Webshop"

 : ImportParameter

name = "turnover"

 : Number

name = "ERP"

 : IEModul

 : Number

TurnoverOfLastDay

TurnoverOfLastDay

 : hasType : hasType

 : hasParameter

 : offers

 : hasParameter

 : offers

Figure 13: Scenario 1 - PIM level

Variant C: The export parameter Webshop.sumOfSalesLastDay.sum is not
semantically annotated. The expected results of the semantic conflict analysis
process are:

• Conflict analysis cannot identify an appropriate interface which delivers
the defined business object. Due to this fact, an integration specialist has
to map the business object Sum of sales to the return parameter sum of
the functional interface getSumOfSalesLastDay.

Variant D: The import parameter ERP.saveSumOfSalesLastDay.turnover
is not semantically annotated. The expected results of the semantic conflict
analysis process are:

• Conflict analysis cannot identify an appropriate interface which accepts
the defined business object. Equivalent to variant C, an integration spe-
cialist has to map the business object Sum of sales to the import para-
meter turnover of the function interface saveSumOfSalesLastDay.

Variants C and D can be generalized to cases where both systems don’t have
any functional interfaces. In those cases, they have to be manually added and
annotated at the PSM level, and then transformed to the PIM level.

3.2 Scenario 1a: Mapping of Business Components to In-
tegratable Elements

In this variation of Scenario 1, the PIM offers additional Interface for each
IntegratableElement1 at the PIM level (Figure 14). The same CIM from
Scenario 1 is used (Figure 12).

1IEModule is a subclass of IntegratableElement

20

name = "saveSumOfSalesLastDay"

 : FunctionInterface

name = "SAP_DB"

 : IEModule

name = "Apache_Webserver"

 : IEModule

name = "sumOfSalesLastDay"

 : FunctionInterface

name = "setSum"

 : FunctionInterface
name = "getSum"

 : FunctionInterface

name = "value"

 : ImportParameter name = "turnover"

 : ImportParameter

name = "value"

 : ExportParameter

name = "sum"

 : ExportParameter

 : Number : Number

TurnoverOfLastDay
TurnoverOfLastDay

 : hasType : hasType : hasType : hasType

 : offers
 : offers

 : offers : offers

 : hasParameter
 : hasParameter : hasParameter : hasParameter

Figure 14: Scenario 1a - PIM level

This example shall emphasize the need for a manual mapping between a
BusinessComponent at the CIM level (e.g., Webshop) and a set of Integrat-
ableElements and/or Interfaces at the PIM level. The corresponding map-
ping metamodel is described in chapter 1.1.7 . For this scenario the Webshop
business component is manually mapped to the Apache Webserver integratable
element. Similarily, the ERP System business component is mapped to the
SAP DB integratable element2 (figure 15).

PIMCIM Mapping Model (MM)

name = "Apache_Webserver"

 : IEModule

name = "SAP_DB"

 : IEModule
name = "ERP System"

 : BusinessComponent

name = "Webshop"

 : BusinessComponent
 : BCMapping

 : BCMapping

 : isImplementedByIEs

 : isImplementedByIEs

 : represents

 : represents

Figure 15: Scenario 1a - mapping between CIM and PIM

Variant A: Without mappings, the semantic conflict analysis will find four
different tuples that satisfy the requirements defined at the CIM level. The
number of possible tuples is the cardinality of the cartesian product of the sets
E and I:

• E is the set of export interfaces which fulfilled the required semantics

• I is the set of import interfaces which fulfilled the required semantics

E × I = {(e, i) | e ∈ E ∧ i ∈ I}

2To emphasize the difference between required (CIM) and provided systems (PIM) the
BusinessComponents (e.g., Webshop) and IntegratableElements (e.g., Apache Webserver)
have different names compared to Scenario 1.

21

requirements mapping

PIM

name = "saveSumOfSalesLastDay"

 : FunctionInterface

importRight : BOImportRequirement

name = "SAP_DB"

 : IEModule

name = "Apache_Webserver"

 : IEModule

export : BOExportRequirement

CIM

name = "sumOfSalesLastDay"

 : FunctionInterface

name = "Sum of sales"

 : BusinessObject

name = "setSum"

 : FunctionInterface
name = "getSum"

 : FunctionInterface

name = "turnover"

 : ImportParameter

name = "value"

 : ImportParameter

name = "sum"

 : ExportParameter
name = "value"

 : ExportParameter

TurnoverOfLastDay : satisfy : satisfy

 : belongsTo : belongsTo

 : satisfy : satisfy

 : offers
 : offers

 : offers : offers

 : hasParameter : hasParameter : hasParameter : hasParameter

Figure 16: Scenario 1a - Result of the semantic conflict analysis without prede-
fined mappings

PIM

requirements mapping

CIM

name = "saveSumOfSalesLastDay"

 : FunctionInterface

name = "Import turnover of last day"

 : ImportInterface

name = "Export turnover of last day"

 : ExportInterface

importRight : BOImportRequirement

name = "Apache_Webserver"

 : IEModule

name = "SAP_DB"

 : IEModule

export : BOExportRequirement

name = "sumOfSalesLastDay"

 : FunctionInterface

name = "Sum of sales"

 : BusinessObject

name = "ERP System"

 : BusinessComponent

name = "Webshop"

 : BusinessComponent

name = "setSum"

 : FunctionInterface
name = "getSum"

 : FunctionInterface

name = "value"

 : ImportParameter
name = "turnover"

 : ImportParameter

name = "value"

 : ExportParameter

name = "sum"

 : ExportParameter

 : Connection

TurnoverOfLastDay

 : belongsTo : belongsTo

 : in : out

 : satisfy : satisfy

 : offers
 : offers : offers

 : offers

 : transports

 : hasParameter : hasParameter : hasParameter

 : includedNodes : includedNodes

 : hasParameter

Figure 17: Scenario 1a - Result of SeCA with predefined mapping

Every tuple (e, i) represents a path which a business object can take between
an export interface and an inport interface. A reflexive pathway represents an
export and import on the same system. In variant A (figure 16) there are four
possible paths to realize the defined integration scenario:

1. Apache Webserver.sumOfSalesLastDay to Apache Webserver.setSum: re-
flexive path

2. Apache Webserver.sumOfSalesLastDay to SAP DB.saveSumOfSalesLastDay:

22

satisfies CIM requirements

3. SAP DB.getSum to Apache Webserver.setSum: wrong direction

4. SAP DB.getSum to SAP DB.saveSumOfSalesLastDay: reflexive path

This is caused by the fact that a BusinessComponent at the CIM level
(e.g., Webshop) represents only a human readable understanding of a real world
system. In order to make a BusinessComponent machine processable (essen-
tial for the semantic conflict analysis), a precise mapping to a concrete system
(represented by an IntegratableElement) is helpful. Without this mapping
the integration specialist has to select the suitable path manually during the
conflict analysis process. In complex integration scenarios the set of possible
paths can become unmanageable, and predefined mappings efficiently limit the
number of correct combinations, as illustrated in variant B.

Varinat B: When the mapping is used, only one path results (Figure 17):
Apache Webserver.sumOfSalesLastDay to SAP DB.saveSumOfSalesLastDay.

3.3 Scenario 2: Transfer of a structured Business Object

The second scenario focuses on the transfer of more complex data between two
systems. At the CIM level a structured business object is defined. The un-
derlying PIM interfaces of the systems have parameters with complex types.
Scenario 2 defines the base scenario for handling semantics of complex data.
In scenarios 2.1 up to 2.5, the underlying PIM interfaces are modified to show
different semantic aspects, that have to be covered by the conflict analysis al-
gorithm. Figure 18 shows the visualization of the CIM model. It consists of
two business components, representing a Webshop and an ERP system, as in
the previous scenario. The business object that is to be transferred between
them has a complex structure however. It comprises of a list of customers, each
customer being identified by an ID and carrying information about his turnover
for the last day. All BusinessObjects are annotated with concepts from the
ontology described at the beginning of chapter 3. Complex business objects
ListOfCustomer and Customer are annotated with concepts CustomerList and
Customer respectively. Business object CustomerID is annotated with ID and
Turnover of last day with TurnoverOfLastDayOfACustomer.

Both business components (Webshop and ERP) are represented at the PIM
level by two modules with an interface getCustomerListForLastDay for the
exporting side and interface saveSumEveryCustomer on the importing side,
shown in figure 19. The interface getCustomerListForLastDay offers a pa-
rameter customers annotated with CustomerList, that is a list of customer
elements annotated with Customer. customerType is a complex type consist-
ing of three fields id, name and turnover, annotated with concepts ID, Cus-
tomerName and TurnoverOfLastDayOfACustomer respectively. The importing
interface saveSumEveryCustomer offers the same import structure in form of a
list of cu objects, except for the field name which does not exist.

23

ERP System

Import last
day's turnover

of every
customer

Webshop

Export
customer list

with turnovers
of last day

List of Customers

Turnover of
last day

Customer

Customer ID

TurnoverOfLastDayOfACustomer

CustomerList

Customer

ID

Figure 18: Scenario 2 - CIM level

The expected results of the semantic conflict analysis for this scenario are:
the algorithm shall find all export and import representations at the PIM level
for all business objects from the CIM level and will create the following results
(the field name should be ignored, as it is not needed on the importing side):

• Interface getCustomerListForLastDay (Webshop, PIM) must be found
for export

• Interface saveSumEveryCustomer (ERP, PIM) must be found for import

• Business object List of Customers (CIM) is mapped to export parame-
ter Webshop.getCustomerListForLastDay.customers (PIM)

• Business object List of Customers (CIM) is mapped to import parameter
ERP.saveSumEveryCustomer.sumForCustomers (PIM)

• Business object Customer (CIM) is mapped to Webshop export list ele-
ment customer (PIM)

• Business object Customer (CIM) is mapped to ERP import list element
cu (PIM)

• Business object Customer ID (CIM) is mapped to Webshop export field
customer.id (PIM)

• Business object Customer ID (CIM) is mapped to ERP import field cu.id
(PIM)

• Business object Turnover of last day (CIM) is mapped to Webshop
export field customer.turnover (PIM)

24

 : FunctionInterface

name = "getCustomerListForLastDay"

 : FunctionInterface

name = "saveSumEveryCustomer"

 : ImportParameter

name = "sumForCustomers"

 : ComplexType

name = "cuType" : ComplexType

name = "customerType"

 : ExportParameter

name = "customers"

 : IEModul

name = "Webshop"

 : ListElement

name = "customer"
 : Field

name = "turnover"

 : Field

name = "name"

 : Field

name = "sum"

 : Set

 : Number

 : Number

name = "id"

 : Field

 : Number

 : Set

 : Number

 : String

name = "ERP"

 : IEModul

name = "id"

 : Field

name = "cu"

 : ListElement

TurnoverOfLastDayOfACustomer

TurnoverOfLastDayOfACustomer

CustomerName

CustomerList

CustomerList

Customer

Customer

ID

ID

 : hasField

 : hasField

 : hasField

 : hasType

 : hasType

 : hasType
 : hasField

 : hasType

 : hasType
 : hasField

 : hasType

 : offers

 : hasListElement

 : hasListElement

 : hasType

 : hasParameter : hasParameter

 : hasType

 : offers

 : hasType

Figure 19: Scenario 2 - PIM level

• Business object Turnover of last day (CIM) is mapped to ERP import
field cu.sum (PIM)

• Webshop Export field customer.name (PIM) is filtered out.

3.4 Scenario 2.1: Interface call order

Scenario 2.1 focuses on situations where more than one interface call is necessary
for the data export. At the CIM level the business object List of Customers
remains unchanged and still consists of customers, their IDs and turnover data as
in the previous scenario. However, in this scenario the additional business ob-
ject Sum of sales, annotated with TurnoverOfLastDayForASetOfCustomers,
should be transfered (see figure 20).

The previous scenario is modified in such a way, that required output is
generated from two Webshop interfaces, which furthermore depend on each
other. Besides the original interface getCustomerListForLastDay the struc-
ture of the Webshop now includes an additional interface getTotalSale, which
delivers totalSale as export parameter annotated with TurnoverOFLastDay-
ForASetOfCustomers. It requires an import parameter customerList anno-
tated with CustomerList. This is semantically equivalent exactly to the output
of the other Webshop interface, hence two interfaces depend on each other.
The structure of the ERP interface saveSumEveryCustomer now includes the
additional import parameter totalTurnover annotated with TurnoverOfLast-
DayForASetOfCustomers. Figure 21 summarizes the new PIM interfaces of the
Webshop and ERP.

The expected results of the semantic conflict analysis for this scenario are:
the algorithm shall find all PIM export and import representations of all busi-
ness objects and will create the results given below. It must further recognize

25

ERP System

Import last
day's turnover

of every
customer

Webshop

Export
customer list

with turnovers
of last day

List of Customers

Customer ID

Customer

Turnover of
last day

Sum of sales

TurnoverOfLastDayForASetOfCustomers

TurnoverOfLastDayOfACustomer

CustomerList

Customer

ID

Figure 20: Scenario 2.1 - CIM level

 : FunctionInterface

name = "getCustomerListForLastDay"

 : FunctionInterface

name = "saveSumEveryCustomer"

 : ImportParameter

name = "sumForCustomers"

 : ComplexType

name = "customerType"

 : ComplexType

name = "cuType"

 : FunctionInterface

name = "getTotalSale"

 : ImportParameter

name = "customerList"
 : ExportParameter

name = "totalSale"

 : ImportParameter

name = "totalTurnover"

 : ExportParameter

name = "customers"

 : IEModul

name = "Webshop"

 : ListElement

name = "customer"

 : Field

name = "turnover"

 : Field

name = "sum"

 : Field

name = "name"

 : Number

name = "id"

 : Field

name = "ERP"

 : IEModul

 : Number

 : Number

 : String

 : Number

 : Number

name = "cu"

 : ListElement

 : Set

 : Set

 : String

name = "id"

 : Field

TurnoverOfLastDayForASetOfCustomers

TurnoverOfLastDayForASetOfCustomers

TurnoverOfLastDayOfACustomer

TurnoverOfLastDayOfACustomer

CustomerList

CustomerName

CustomerList

CustomerList

Customer

Customer

ID

ID

 : offers

 : hasType

 : hasParameter

 : hasType

 : hasField

 : hasParameter

 : hasType

 : hasField

 : hasField

 : hasType

 : hasType

 : hasParameter

 : hasType

 : offers

 : hasListElement

 : hasType

 : hasField

 : hasType

 : hasParameter

 : hasType

 : hasParameter

 : hasType

 : hasField

 : hasListElement

 : hasType

 : offers

 : hasType

Figure 21: Scenario 2.1 - PIM level

that the import field totalTurnover of the ERP system can only be satisfied
if the interface getTotalSale of the Webshop is additionally called. This in-

26

terface needs the import parameter customerList, which can be obtained from
interface getCustomerListForLastDay. The concrete expected output is:

• Interface getCustomerListForLastDay (Webshop, PIM) must be found
for export

• Interface getTotalSale (Webshop, PIM) must be found for additional
export

• Interface getTotalSale (Webshop, PIM) must be found for import

• The correct call order between getCustomerListForLastDay and getTo-
talSale must be identified, that is, getCustomerListForLastDay must
be executed first, and its output pased to getTotalSale

• Interface saveSumEveryCustomer (ERP, PIM) must be found for import

• Business object List of Customers (CIM) is mapped to export parame-
ter Webshop.getCustomerListForLastDay.customers (PIM)

• Business object List of Customers (CIM) is mapped to import parame-
ter ERP.saveSumEveryCustomer.sumForCustomers (PIM)

• Business object List of Customers (CIM) is mapped to import parame-
ter Webshop.getTotalSale.customerList (PIM)

• Business object Customer (CIM) is mapped to Webshop export list ele-
ment getCustomerListForLastDay.customers.customer (PIM)

• Business object Customer (CIM) is mapped to ERP import list element
saveSumEveryCustomer.sumForCustomers.cu (PIM)

• Business object Customer (CIM) is mapped to Webshop import list ele-
ment getTotalSale.customerList.customer (PIM)

• Business object Customer ID (CIM) is mapped to Webshop export field
getCustomerListForLastDay.customers.customer.id (PIM)

• Business object Customer ID (CIM) is mapped to ERP import field saveSumEv-
eryCustomer.sumForCustomers.cu.id (PIM)

• Business object Customer ID (CIM) is mapped to Webshop import field
getTotalSale.customerList.customer.id (PIM)

• Business object Turnover of last day (CIM) is mapped to Webshop ex-
port field getCustomerListForLastDay.customers.customer.turnover
(PIM)

• Business object Turnover of last day (CIM) is mapped to ERP import
field saveSumEveryCustomer.sumForCustomers.cu.sum (PIM)

27

• Business object Turnover of last day (CIM) is mapped to Webshop
import field getTotalSale.customerList.customer.turnover (PIM)

• Business object Sum of sales (CIM) is mapped to export parameter Web-
shop.getTotalSale.totalSale (PIM)

• Business object Sum of sales (CIM) is mapped to import parameter
ERP.saveSumEveryCustomer.totalTurnover (PIM)

• Webshop Export field customer.name (PIM) is filtered out.

3.5 Scenario 2.2: Interface choice

Scenario 2.2 shall demonstrate the capability of the algorithm to detect multiple
possibilities for export and import of data. The requirement definition at the
CIM level is the same as in the original version of scenario 2 (refer to figure 18
on page 24). The PIM interface description includes two interfaces that deliver
exactly the same data and structure.

Figure 22 shows the PIM interfaces of the Webshop and ERP system. The
Webshop additionally offers the interface getCustListTurnover with an export
parameter, that has the same type as export parameter customers as well as
the same semantic annotation. Both interfaces deliver a customer list with all
relevant data, that is needed by the ERP system. Using interface getCustList-
Turnover is an alternative to call interface getCustomerListForLastDay.

 : FunctionInterface

name = "getCustomerListForLastDay"

 : FunctionInterface

name = "saveSumEveryCustomer"

 : FunctionInterface

name = "getCustListTurnover"

 : ImportParameter

name = "sumForCustomers"

 : ExportParameter

name = "custs"

 : ComplexType

name = "cuType"

 : ComplexType

name = "customerType"

 : ExportParameter

name = "customers"

 : IEModul

name = "Webshop"

 : ListElement

name = "customer"

 : Field

name = "turnover"

 : Field

name = "name" : Field

name = "sum"

 : Number : Set

 : Number

 : String

 : Number

 : Set

name = "ERP"

 : IEModul

name = "id"

 : Field

name = "id"

 : Field

 : Number

name = "cu"

 : ListElement

TurnoverOfLastDayOfACustomer

TurnoverOfLastDayOfACustomer

CustomerName

CustomerList

CustomerList
CustomerList

Customer

Customer

ID

ID

 : offers

 : hasField

 : hasType

 : hasField

 : hasType

 : hasType

 : hasType

 : hasType

 : hasField

 : hasType

 : hasField

 : hasType

 : offers

 : hasListElement

 : hasListElement

 : hasType

 : hasParameter : hasParameter

 : hasParameter

 : hasField

 : offers

 : hasType

 : hasType

Figure 22: Scenario 2.2 - PIM level

The expected results of the semantic conflict analysis for this scenario are:
the algorithm shall find all PIM export and import representations of all busi-

28

ness objects and will create the results given below. It must recognize that
it is possible to export the required data for the ERP system from interface
getCustListTurnover as well as from getCustomerListForLastDay.

• Interface getCustomerListForLastDay (Webshop, PIM) must be found
for export

• Interface getCustListTurnover (Webshop, PIM) must be found for ex-
port

• Interface saveSumEveryCustomer (ERP, PIM) must be found for import

• The alternative must be identified

• If the interface getCustomerListForLastDay is choosen:

– Business object List of Customers (CIM) is mapped to export pa-
rameter Webshop.getCustomerListForLastDay.customers (PIM)

– Business object List of Customers (CIM) is mapped to import pa-
rameter ERP.saveSumEveryCustomer.sumForCustomers (PIM)

– Business object Customer (CIM) is mapped to Webhsop export list
element getCustomerListForLastDay.customers.customer (PIM)

– Business object Customer (CIM) is mapped to ERP import list ele-
ment saveSumEveryCustomer.sumForCustomers.cu (PIM)

– Business object Customer ID (CIM) is mapped to Webhsop export
field getCustomerListForLastDay.customers.customer.id (PIM)

– Business object Customer ID (CIM) is mapped to ERP import field
saveSumEveryCustomer.sumForCustomers.cu.id (PIM)

– Business object Turnover of last day (CIM) is mapped to Web-
shop export field getCustomerListForLastDay.customers.custo-
mer.turnover (PIM)

– Business object Turnover of last day (CIM) is mapped to ERP
import field saveSumEveryCustomer.sumForCustomers.cu.sum (PIM)

• If the interface getCustListTurnover is choosen:

– Business object List of Customers (CIM) is mapped to export pa-
rameter Webshop.getCustListTurnover.custs (PIM)

– Business object List of Customers (CIM) is mapped to import pa-
rameter ERP.saveSumEveryCustomer.sumForCustomers (PIM)

– Business object Customer (CIM) is mapped to Webshop export list
element getCustListTurnover.custs.customer (PIM)

– Business object Customer (CIM) is mapped to ERP import list ele-
ment saveSumEveryCustomer.sumForCustomers.cu (PIM)

29

– Business object Customer ID (CIM) is mapped to Webshop export
field getCustListTurnover.custs.customer.id (PIM)

– Business object Customer ID (CIM) is mapped to ERP import field
saveSumEveryCustomer.sumForCustomers.cu.id (PIM)

– Business object Turnover of last day (CIM) is mapped to Web-
shop export field getCustListTurnover.custs.customer.turnover
(PIM)

– BO Business object Turnover of last day (CIM) is mapped to
ERP import field saveSumEveryCustomer.sumForCustomers.cu.sum
(PIM)

Actually, regardless of the types of alternative PIM objects (e.g., customers
and custs) which have the equivalent semantics, the semantic conflict analysis
algorithm should generate the mappings given above, because semantic anno-
tations are matched. Eventual structural incompatibility (e.g., custs is chosen,
but represents an ID as a string instead of expected number) will be discov-
ered only during the structural conflict analysis. Therefore, it is important to
keep track of all semantically correct combinations, as some may be invalidated
during the subsequent process of conflict analysis. In that case, backtracking is
required to identify alternative solutions.

3.6 Scenario 2.3: Deadlock recognition

Scenario 2.3 is based on scenario 2.1. At the CIM level the same requirements
are defined (refer to figure 20 on page 26). At the PIM level all three interfaces
have an additional parameter, that will cause a deadlock. The PIM interfaces
are shown in figure 23. Interface saveSumEveryCustomer expects an import
parameter cities, which is a list of cities. This kind of list is exported in
interface getTotalSale through parameter cityList, but it is also needed as
import parameter cities in interface getCustomerListForLastDay.

The expected results of the semantic conflict analysis for this scenario are:
the algorithm shall find all PIM export and import representations of all business
objects and will create the results below. It must recognize that calling interface
getCustomerListForLastDay and getTotalSale of the Webshop will result
in a deadlock, because each of the interfaces expects data from the opposite
interface. It is not possible to realize this integration scenario conflict-free,
unless the interfaces are modified or another interface is available that delivers
additional required data.

• Interface getCustomerListForLastDay (Webshop, PIM) must be found
for export

• Interface getCustomerListForLastDay (Webshop, PIM) must be found
for import

30

 : FunctionInterface

name = "getCustomerListForLastDay"
 : FunctionInterface

name = "saveSumEveryCustomer"

 : ImportParameter

name = "sumForCustomers"

 : ComplexType

name = "customerType"

 : ComplexType

name = "cuType"

 : ExportParameter

name = "totalSale"

 : ImportParameter

name = "customerList"

 : FunctionInterface

name = "getTotalSale"

 : ImportParameter

name = "totalTurnover"

 : ExportParameter

name = "customers"

 : IEModule

name = "Webshop"

 : ListElement

name = "customer"

 : ImportParameter

name = "cities"

 : ImportParameter

name = "cities"

 : ExportParameter

name = "cityList"

 : Field

name = "turnover"

 : Field

name = "name"

 : Field

name = "sum"

name = "id"

 : Field

name = "city"

 : ListElement

 : String

 : Number

 : String

name = "ERP"

 : IEModule

 : Number

name = "city"

 : ListElement

 : String

 : Number

 : String

name = "cu"

 : ListElement

 : Set

 : Set

 : Number

 : Number

name = "city"

 : ListElement

name = "id"

 : Field

 : Set

 : Set

 : String

 : Set

TurnoverOfLastDayForASetOfCustomers

TurnoverOfLastDayForASetOfCustomers

TurnoverOfLastDayOfACustomer

TurnoverOfLastDayOfACustomer

CityList

CityList

CityList

CustomerName

CustomerCity

City

CustomerCity

CustomerList

CustomerList

CustomerList

Customer

Customer

ID

ID

 : offers

 : hasType

 : hasParameter

 : hasParameter

 : hasParameter

 : hasType

 : hasType

 : hasType

 : hasField

 : hasType

 : hasType

 : hasField

 : hasType

 : hasField

 : hasListElement
 : hasType

 : hasType

 : hasType

 : hasParameter

 : hasParameter

 : offers

 : hasType

 : hasListElement

 : hasField

 : hasType : hasType

 : hasType

 : hasType

 : hasType

 : hasField

 : hasParameter : hasParameter

 : hasParameter

 : hasType

 : hasListElement

 : hasListElement

 : hasListElement

 : offers

 : hasType

Figure 23: Scenario 2.3 - PIM level

• Interface getTotalSale (Webshop, PIM) must be found for export

• Interface getTotalSale (Webshop, PIM) must be found for import

• Interface saveSumEveryCustomer (ERP, PIM) must be found for import

• Business object List of Customers (CIM) is mapped to export parame-
ter Webshop.getCustomerListForLastDay.customers (PIM)

• Business object List of Customers (CIM) is mapped to import parame-
ter ERP.saveSumEveryCustomer.sumForCustomers (PIM)

• Business object List of Customers (CIM) is mapped to import parame-
ter Webshop.getTotalSale.customerList (PIM)

• Business object Customer (CIM) is mapped to Webshop export list ele-
ment getCustomerListForLastDay.customers.customer (PIM)

• Business object Customer (CIM) is mapped to ERP import list element
saveSumEveryCustomer.sumForCustomers.cu (PIM)

• Business object Customer (CIM) is mapped to Webshop import list ele-
ment getTotalSale.customerList.customer (PIM)

• Business object Customer ID (CIM) is mapped to Webshop export field
getCustomerListForLastDay.customers.customer.id (PIM)

31

• Business object Customer ID (CIM) is mapped to ERP import field save-
SumEveryCustomer.sumForCustomers.cu.id (PIM)

• Business object Customer ID (CIM) is mapped to Webshop import field
getTotalSale.customerList.customer.id (PIM)

• Business object Turnover of last day (CIM) is mapped to Webshop ex-
port field getCustomerListForLastDay.customers.customer.turnover
(PIM)

• Business object Turnover of last day (CIM) is mapped to ERP import
field saveSumEveryCustomer.sumForCustomers.cu.sum (PIM)

• Business object Turnover of last day (CIM) is mapped to Webshop
import field getTotalSale.customerList.customer.turnover (PIM)

• Business object Sum of sales (CIM) is mapped to export parameter Web-
shop.getTotalSale.totalSale (PIM)

• Business object Sum of sales (CIM) is mapped to import parameter
ERP.saveSumEveryCustomer.totalTurnover (PIM)

• Export parameter Webshop.getTotalSale.cityList (PIM) is mapped to
import parameter Webshop.getCustomerListForLastDay.cities (PIM)

• Webshop export list element getTotalSale.cityList.city (PIM) is mapped
to Webshop import parameter getCustomerListForLastDay.cities.city
(PIM), based on semantic reasoning (CustomerCity is a City, see ontology
in Figure 11).

• Deadlock between interfaces Webshop.getCustomerListForLastDay and
Webshop.getTotalSale must be recognized, based on mappings between
getCustomerListForLastDay.cities and getTotalSale.cityList, as
well as between getCustomerListForLastDay.customers and getTotal-
Sale.customerList

3.7 Scenario 2.4: Interface call loop

Scenario 2.4 shall demonstrate requirement for the algorithm to detect a need
for consecutive interface calls. This kind of transfer occurs when a system
exports list-based data (collections) and an importing system accepts single data
objects only. Requirements of scenario 2.4 are the same as in scenario 2. The
structured business object List of Customers, annotated with CustomerList
shall be transfered, which is a collection of Customer objects annotated with
Customer, consisting of Customer ID and Turnover of last day, annotated
with ID and TurnoverOfLastDayOfACustomer . The underlying PIM interface
of the ERP system will no longer accept a list of customers, but single customer
data objects. For better readability we have included again the CIM diagram
(figure 24) of section 3.3.

32

ERP System

Import last
day's turnover

of every
customer

Webshop

Export
customer list

with turnovers
of last day

List of Customers

Turnover of
last day

Customer

Customer ID

TurnoverOfLastDayOfACustomer

CustomerList

Customer

ID

Figure 24: Scenario 2.4 - CIM level

At the PIM level (Figure 25) the Webshop is described by an interface get-
CustomerListForLastDay that offers an export parameter customers that is
a list of customers, annotated with CustomerList. Elements of the list are of
type Customer annotated with Customer, comprising of the fields id, turnover
and name, annotated with ID, TurnoverOfLastDayOfACustomer and Customer-
Name respectively. The ERP system, in which the data shall be imported, offers
the interface saveSum with two input parameters id and value, annotated with
ID and TurnoverOfLastDayOfACustomer.

The expected results of the semantic conflict analysis for this scenario are:
the algorithm shall find all PIM export and import representations of all busi-
ness objects and will create the results below. It must be able to recognize
that the elements of the list customer are semantically equivalent to the im-
port parameters of the ERP system and that can be imported iteratively, by
consecutive interface calls.

• Interface getCustomerListForLastDay (Webshop, PIM) must be found
for export

• Interface saveSum (ERP, PIM) must be found for import

• Business object List of Customers (CIM) is mapped to export parame-
ter Webshop.getCustomerListForLastDay.customers (PIM)

• Import mapping for the business object List of Customers cannot be
found – no equivalent PIM parameter exists

• Business object Customer (CIM) is mapped to Webshop export list ele-
ment getCustomerListForLastDay.customers.customer (PIM)

33

 : FunctionInterface

name = "getCustomerListForLastDay"

 : ComplexType

name = "customerType"

 : ExportParameter

name = "customers"

 : IEModul

name = "Webshop"

 : FunctionInterface

name = "saveSum"

 : ListElement

name = "customer"

 : ImportParameter

name = "value"

 : ImportParameter

name = "id"

 : Field

name = "turnover"

 : Field

name = "name"

name = "ERP"

 : IEModul

 : Number

 : Number

 : String

name = "id"

 : Field

 : Number : Number

 : Set

TurnoverOfLastDayOfACustomer

TurnoverOfLastDayOfACustomer

CustomerName

CustomerList

Customer

ID

ID

 : hasField

 : hasField

 : hasType

 : hasType
 : hasField

 : hasType

 : hasParameter

 : hasType : hasType

 : hasParameter

 : hasType

 : offers

 : hasType

 : hasListElement

 : hasParameter

 : offers

Figure 25: Scenario 2.4 - PIM level

• Import mapping for the business object Customer cannot be found – no
equivalent PIM parameter exists

• Business object Customer ID (CIM) is mapped to Webshop export field
getCustomerListForLastDay.customers.customer.id (PIM)

• Business object Customer ID (CIM) is mapped to import parameter ERP
.saveSum.id (PIM)

• Business object Turnover of last day (CIM) is mapped to Webshop ex-
port field getCustomerListForLastDay.customers.customer.turnover
(PIM)

• Business object Turnover of last day (CIM) is mapped to import pa-
rameter ERP.saveSum.value (PIM)

• Webshop export field getCustomerListForLastDay.customers.customer
.name (PIM) is filtered out

• The missing import-mappings for the business objects List of Customers
and Customer have to be identified as a list iteration operation, involv-
ing multiple calls of saveSum, that is, once for each list element from
customers. The reasoning must be done using semantical equivalence of
fields id and turnover at the Webshop side and import parameters id
and value at the ERP side, as well as based on the semantic meaning of
the list, being in this case a collection of identical elements.

34

3.8 Scenario 3: Integrating a Domain Function

In this scenario the name of the most valuable customer has to be transfered from
the Webshop to the ERP system (see Figure 26). At the CIM level this transfer
is modeled as the Name business object annotated with CustomerName. At the
PIM level, the Webshop exports customer name as two parameters, firstname
and lastname annotated with CustomerFirstName and CustomerLastName,
but the ERP System accepts only one import parameter, name annotated with
CustomerName. With the help of a domain function nameConcatenation, it is
possible to concatenate first name and last name to name and thus fulfill the
scenario requirements.

ERP System

Import
customer

name with the
highest
turnover

Webshop

Export
customer

name with the
highest
turnover

Name

CustomerName

Figure 26: Scenario 3 - CIM level

 : FunctionInterface

name = "getMostValuableCustomer"

name = "nameConcatenation"

 : FunctionInterface

 : IEModule

name = "concatService"

 : Field

name = "firstname"

 : ComplexType

name = "Customer"

 : ImportParameter

name = "firstName"

 : ImportParameter

name = "lastName"

 : IEModule

name = "Webshop"

 : Field

name = "lastname"

 : ExportParameter

name = "customer"

 : FunctionInterface

name = "setName"

 : ImportParameter

name = "name"

 : ExportParameter

name = "name"

name = "ERP"

 : IEModule

 : String

 : String

 : String
 : String

 : String
 : String

NameConcatenation

CustomerName

CustomerLastName

CustomerFirstName

FirstName

LastName

Customer

Name

 : hasParameter

 : hasParameter

 : hasType

 : hasType

 : offers

 : hasField

 : hasParameter

 : hasParameter

 : hasField

 : hasType

 : hasParameter

 : offers

 : hasType

 : hasType

 : hasType

 : offers

 : hasType

Figure 27: Scenario 3 - PIM level

The expected results of the conflict analysis are:

• An export parameter annotated with CustomerName cannot be found,
hence, export mapping for the business object Name cannot be identified.

35

• The algorithm tries to find a domain function which delivers a value an-
notated with CustomerName as its output. The function nameConcate-
nation delivers the export parameter name annotated with Name. As the
concept Name is an upper concept of the required CustomerName (con-
nected through a ”isA” predicate), business object Name (CIM) is mapped
to export parameter concatenationService.nameConcatenation.name
(PIM).

• Export parameter Webshop.getMostValuableCustomer.customer.first-
name (PIM) is mapped to import parameter concatService.nameConcate-
nation.firstName (PIM) because FirstName isA CustomerFirstName

• Export parameter Webshop.getMostValuableCustomer.customer.last-
name (PIM) is mapped to import parameter concatService.nameConca-
tenation.lastName (PIM) because LastName isA CustomerLastName

• Business object Name (CIM) is mapped to import parameter ERP.setName
.name (PIM)

3.9 Scenario 4: Integrating a Connector Function

The fourth scenario includes the connector function Add which models a business
requirement defined at the CIM level (Figure 28). Two Webshop systems export
total daily turnovers as business objects Turnover Web Shop 1 and Turnover
Web Shop 2, both annotated with TurnoverOfLastDay. The connector function
receives both business objects and aggregates them into the single object Total
Turnover, also annotated with TurnoverOfLastDay. The ERP system receives
this object.

Export
turnover of

 last day

Webshop 1

Export
turnover of

last day

Webshop 2

ERP System

Import sum of
turnovers of
all web shops

Add

Turnover
Webshop 1

Turnover
Webshop 2

Total
Turnover

TurnoverOfLastDay

TurnoverOfLastDay

TurnoverOfLastDay

Figure 28: Scenario 4 - CIM level

36

At the PIM level (Figure 29, two Webshop systems have identical interfaces
getSales which deliver export parameters sales annotated with TurnoverOfLast-
DayForASetOfCustomers. The ERP system has a single interface setSales
that accept the import parameter sales. Export parameters from two Web-
shops have to be aggregated. The precise arithmetical statements describing
behavior of the connector function can either be defined in an imperative, plat-
form independent programming language like Java, or using the UML Action
Semantics models, as proposed in [28].

 : IEModule

name = "Webshop2"

 : IEModule

name = "Webshop1"

 : FunctionInterface

name = "getSales"
 : FunctionInterface

name = "getSales"

 : FunctionInterface

name = "setSales"

 : ImportParameter

name = "sales" : ExportParameter

name = "sales"

 : ExportParameter

name = "sales"

name = "ERP"

 : IEModule

 : Number : Number
 : Number

TurnoverOfLastDayForASetOfCustomersTurnoverOfLastDayForASetOfCustomersTurnoverOfLastDayForASetOfCustomers

 : hasType

 : offers

 : hasParameter
 : hasParameter

 : offers : offers

 : hasType
 : hasType

 : hasParameter

Figure 29: Scenario 4 - PIM level

The results of the semantic conflict analysis are:

• Buisness object Turnover Webshop 1 (CIM) is mapped to export para-
meter Webshop1.getSales.sales (PIM) because TurnoverOfLastDay is
an upper concept of TurnoverOfLastDayForASetOfCustomers. Simulta-
neously, the export parameter sales is mapped to import parameter of
the connector function Add (not shown in this model).

• Buisness object Turnover Webshop 2 (CIM) is mapped to export para-
meter Webshop2.getSales.sales (PIM) because TurnoverOfLastDay is
an upper concept of TurnoverOfLastDayForASetOfCustomers. Simulta-
neously, the export parameter sales is mapped to import parameter of
the connector function Add (not shown in this model).

• Buisness object Total Turnover (CIM) is mapped to import paramter
ERP.setSales.sales because TurnoverOfLastDay is an upper concept of
TurnoverOfLastDayForASetOfCustomers. Simultaneously, export para-
meter of the connector function Add is mapped to the import parameter
sales.

37

3.10 Scenario 5: Multiple Annotations

This scenario shall demonstrate the analysis of multiple annotations. These are
used if a single annotation is not sufficient to convey the overall and complete
semantic meaning of the annotated parameter or function. The scenario de-
scribed in the following focuses on multiple representation annotation with the
AND-operator (see section 5.4.2 for further description of the annotation type).

Marketing Department

Import
customer data

Sales Department

Export
customer data

Customer data

CustomerListWithTurnoverThisYear DomesticCustomerList

AND

Figure 30: Scenario 5 - CIM level

At the CIM level (Figure 30) a very abstract business process is described. It
defines the transfer of Customer data from the Sales Department to the Mar-
keting Department, modeled as business components. The structure of the
business object is not described any further, but the semantic annotation of it
references the concepts CustomerListWithTurnoverThisYear and DomesticCus-
tomerList, combined by the logical operator AND. The data transfered to the
marketing department is an accumulated customer list, that includes customers
that have purchased something in the past year, and have a domestic address.

The system’s interfaces at the PIM level are shown in Figure 31. The tech-
nical realization of the Sales Department is represented by an ERP system,
that offers two function interfaces getDomesticCustomers and getCustomer-
sWithTurnoverThisYear. The export parameters of the interfaces deliver the
domestic customer list and the list of customers, that made turnover the last
year, respectively. Both parameters expose the same type structure, which is
a set of customers composed by id, firstName, lastName and emailAddress
fields. The Marketing System on the right side expects the same parameter
type structure, but the import parameter customers is annotated with both
concepts from the ontology, combined by logical AND.

The expected results of the semantic conflict analysis are:

• Interface getDomesticCustomers must be found for export (ERP, PIM)

• Interface getCustomersWithTurnoverThisYear must be found for export
(ERP, PIM)

38

 : FunctionInterface

name = "setDomesticCustomersWithTurnoverThisYear"

 : FunctionInterface

name = "getCustomersWithTurnoverThisYear"

name = "customersWithTurnoverThisYear"

 : ExportParameter

 : FunctionInterface

name = "getDomesticCustomers"

 : IEModule

name = "MarketingSystem"

 : ExportParameter

name = "domesticCustomers"

 : ImportParameter

name = "customers"

 : IEModule

name = "ERP"

 : ComplexType

name = "customerType"

 : ComplexType

name = "customerType"
 : Field

name = "emailAddress"

 : Field

name = "emailAddress"

 : ListElement

name = "customer"

 : ListElement

name = "customer"

 : Field

name = "lastName"

 : Field

name = "firstName"

 : Field

name = "lastName" : Field

name = "firstName"

name = "id"

 : Field : Number

 : Set

name = "id"

 : Field

 : Number

 : String

 : Set

 : String

CustomerListWithTurnoverThisYear

CustomerListWithTurnoverThisYear

DomesticCustomerList

DomesticCustomerList

Customer LastName

Customer FirstName
Customer LastName

Customer FirstName

Email Address

Email Address

Customer

Customer

ID

ID

AND

 : offers

 : hasType

 : hasField

 : hasField

 : hasField

 : hasType

 : hasType

 : hasType

 : hasType

 : hasType

 : hasField

 : hasField

 : hasListElement

 : hasListElement

 : hasType

 : hasType

 : hasField

 : hasField

 : hasType

 : hasType

 : hasType

 : hasType

 : hasField

 : hasParameter : hasParameter

 : hasParameter

 : offers

 : hasType

 : offers

Figure 31: Scenario 5 - PIM level

• Interface setDomesticCustomersWithTurnoverThisYear must be found
for import (MarketingSystem, PIM)

• Business object Customer data (CIM) is mapped to the import parameter
MarketingSystem.setDomesticCustomersWithTurnoverThisYear.cus-
tomers (PIM)

• SeCA will recognize the need for a connector function delivering a set of
customers as export parameter, annotated with DomesticCustomerList
AND CustomerListWithTurnoverThisYear. Since no implementation of
such a function as available, the algorithm will suggest to implement a
new one. The new connector function expects two import parameters an-
notated with DomesticCustomerList and CustomerListWithTurnover-
ThisYear, respectively.

• SeCA will map the import parameters of the new connector function to
the export parameters ERP.getDomesticCustomers.domesticCustomers
(PIM) and ERP.getCustomersWithTurnoverThisYear.customersWith-
TurnoverThisYear (PIM), respectively.

• Business object Customer data (CIM) is mapped to the export parameter
of the new connector function (PIM).

39

3.11 Scenario 6: Integrating a Business Function

The following scenario describes the annotation and integration of a business
function at the CIM level, and repeats the integration of a domain (helper)
function at the PIM level. The CIM model (Figure 32) describes two business
components, a Webshop and an ERP system. The Webshop exports a Customer
object, which is annotated with NetTurnover and InvoiceCountry. The first
concept denotes that the Customer object accumulates sum of all ordered items
for a customer, and the second that the business object is uniquely identified
with the country for which taxes subsequently have to be calculated. The ERP
system performs exactly this: based on the net turnover and the tax rate for
the invoice country, it calculates the respective taxes and generates the Gross
turnover business object annotated with the concept GrossTurnover. More-
over, the business function at the ERP side, Calculate gross turnover is
annotated with the concept GrossTurnoverCalculation. This function accepts a
parameter annotated with ValueAddedTaxRate and NetTurnover and computes
the object annotated with GrossTurnover.

Export gross
turnover

Import
customer data

Calculate gross
 turnover

ERP

Export
customer data

Import gross
turnover

Webshop
Customer

Gross turnover

(Containment)

GrossTurnoverCalculation

GrossTurnover

InvoiceCountryNetTurnover

Figure 32: Scenario 6 - CIM level

At the PIM level (Figure 33) there are three IntegratableElements (Web-
shop, ERP and WebService) each with one interface. The Webshop offers in-
terface getCustomer which exports customer object, with fields country and
netTurnover, annotated with InvoiceCountry and NetTurnover respectively.
Furthermore, the Webshop has the interface setGrossTurnover which expects
a parameter grossTurnover annotated with GrossTurnover. The interface of
the ERP system is, however, not able to accept the customer object generated
by the Webshop directly, as its interface calculateGrossTurnover expects the
VATRate parameter, which is annotated with ValueAddedTaxRate. In other
words, the ERP system is not able to convert the invoice country to the cor-
responding tax rate for that country directly. Therefore, another interface is

40

 : FunctionInterface

name = "calculateGrossTurnover"

 : ExportParameter

name = "grossTurnover"

 : ImportParameter

name = "netTurnover"

 : FunctionInterface

name = "determineVATRate"

 : FunctionInterface

name = "setGrossTurnover"

 : ImportParameter

name = "grossTurnover"

 : ComplexType

name = "customerType"

 : Field

name = "netTurnover"

 : FunctionInterface

name = "getCustomer"

 : IEModule

name = "WebService"

 : IEModule

name = "WebShop"

 : Field

name = "country"

 : ExportParameter

name = "customer"

 : ExportParameter

name = "VATRate"

 : ImportParameter

name = "country"
 : ImportParameter

name = "VATRate"

 : String

 : String

 : Number

 : Number

 : Number

 : IEModule

name = "ERP"

ValueAddedTaxRateDetermination
GrossTurnoverCalculation

ValueAddedTaxRate

ValueAddedTa
xRate

GrossTurnover

GrossTurnover

InvoiceCountry

InvoiceCountry

NetTurnover
NetTurnover

Customer

 : offers

 : hasParameter

 : hasType

 : hasField

 : hasParameter

 : hasField
 : hasType

 : hasType

 : hasType

 : hasParameter

 : offers

 : hasType

 : hasType

 : hasParameter

 : hasType

 : offers

 : hasParameter

 : hasParameter

 : hasType

 : offers

 : hasParameter

 : hasType

Figure 33: Scenario 6 - PIM level

modeled, a Web service which performs this conversion using the determinVA-
TRate interface.

The expected results of the semantic conflict analysis are:

• Interface getCustomer must be found for export (Webshop, PIM)

• Business object Customer (CIM) is mapped to export parameter Web-
shop.getCustomer.customer (PIM), or more precisely to its fields cus-
tomer.country and customer.netTurnover based on the containment
annotation

• Interface determineVATRate must be found for export (ERP, PIM)

• Business object Gross turnover (CIM) is mapped to export parameter
ERP.calculateGrossTurnover.grossTurnover (PIM)

• Business object Gross turnover (CIM) is mapped to import parameter
Webshop.setGrossTurnover.grossTurnover (PIM)

• Interface ERP.calculateGrossTurnover must be found as a implementa-
tion for the business function Calculate gross turnover

• Import mapping for the business object Customer cannot be found. There-
fore, additional interfaces are searched and WebService.determineVATRate
is found for import.

• The export parameter Webshop.getCustomer.customer.country (PIM)
is mapped to import parameter WebService.determineVATRate.country
(PIM)

• The export parameter WebService.determineVATRate.VATRate is mapped
to import parameter ERP.calculateGrossTurnover.VATRate

41

• The export parameter Webshop.getCustomer.customer.netTurnover (PIM)
is mapped to import parameter ERP.calcualateGrossTurnover.netTurnover

Effectively, the scenario demonstrates how to annotate a business function at
the CIM level, and to use a helper function to satisfy prerequisites for execution
of the PIM interface corresponding to the CIM business function.

3.12 Scenario 7: Simultaneous Annotation of Business
Objects and Business Functions

The following scenario shall demonstrate how business object requirements and
business function requirements can be generated together and used for seman-
tic reasoning. Due to the specific scenario requirements, we introduce a new
business case (the CIM is given in Figure 34) as well as new domain ontology
(Figure 35).

drawMap

Import
Location

Map Service

Export
Person

AddressBook

getLocation

Import
Customer

Export
Location

Phone Service

Customer

Location

customerLocation

Customer

drawMap

Location

Figure 34: Scenario 7 - CIM level

The scenario describes integration of three systems: addressbook, phone
provider and map service. The goal is to transfer customer information (business
object Customer) from the addressbook to the phone provider ERP system,
determine the phone (and customer’s) location, and then draw a map with the
current phone/user location using a map service. The PIM interfaces realizing
this scenario are given in Figure 36.

The Addressbook module is a database system which exports the Customer
object. The ERP system phoneService of the mobile phone provider offers
two functions with the same signature and semantic parameter annotations,
getPhoneLocation and getSupprotLocation. This example shows that data
annotations are in some cases not expressive enough, as these two functions
return an object which has the Location semantic, but one location refers to
the location of the phone itself, and the other to the location of the nearest

42

supportLocation

Map

customerLocation

drawMap

LocationCustomer

NamephoneNumber

phoneLocation
input

outputinput

output

outputinput

has

input output

has

equivalentTo

Figure 35: Scenario 7 - Ontology

drawMap : FunctionInterface

getSupportLocation :
FunctionInterface

location :
ExportParameter

number :
ImportParameter

getPhoneLocation :
FunctionInterface

location :
ExportParameter

number :
ImportParameter

location :
ImportParameter

map :
ExportParameter

getCustomer :
FunctionInterface

Customer :
ExportParameter

Addressbook :
IEModule

phoneNumber :
 Field

MapService :
IEModule

customerType :
 ComplexType

phoneService :
IEModule supportLocationphoneLocation

phoneNumber

phoneNumber phoneNumber

Customer

drawMap

Map

Location

Location

Location

 : offers

 : hasParameter

 : offers

 : hasParameter : hasParameter

 : hasField

 : hasParameter

 : offers

 : hasParameter : hasParameter

 : offers

 : hasParameter

 : hasType

Figure 36: Scenario 7 - PIM level

support office. This distinction is expressed using two additional functional
annotations, phoneLocation and supportLocation. Finally, the Web Service Map
Service is used to draw a map with the current customer location. The main
problem in this scenario is how to deduce that the location of a customer may be

43

determined via location of his/hers mobile phone (business process at the CIM
level requires customer location, but there is no technical interface realizing this
functionality directly) and how to use functional annotations to select between
functions which offer the same structural signature (computing the phone and
support office locations) but have different meaning. To that end, the algorithm
shall perform the following:

Variant A(annotations as given in Figure 36)

• The interface getCustomer (PIM) must be found for export.

• Business object Customer (CIM) is mapped to export parameter Address-
book.getCustomer.Customer (PIM).

• The import mapping for the business object Customer cannot be found.
Interfaces phoneService.getPhoneLocation and phoneService.getSu-
pportLocation must be found for import. The field Customer.phoneNumber
(PIM) is then mapped to phoneService.getPhoneLocation.number and
to phoneService.getSupportLocation.number (PIM).

• Business object Location (CIM) is mapped to export parameters phone-
Service.getPhoneLocation.location (PIM) and phoneService.getSu-
pportLocation.location (PIM).

• Business object Location (CIM) is mapped to import parameter MapSer-
vice.drawMap.location.

• Export parameters phoneService.getPhoneLocation.location (PIM)
and phoneService.getSupportLocation.location (PIM) are mapped
to import parameter MapService.drawMap.location (PIM).

• The algorithm has found two solutions for calculating location. Using
business function requirements this choice will be reduced to a single func-
tion. Business function customerLocation cannot be directly mapped.
Using reasoning and the domain ontology, the function getPhoneLoca-
tion is found which is annotated with phoneLocation – the location of a
person can be determined by locating his/hers mobile phone (see the F-
logic example below which demonstrates how this equivalence is proven,
the assumption is that a person always carries a mobile phone). Func-
tion getSupportLocation annotated with supportLocation is not seman-
tically compatible with the customerLocation concept, therefore all busi-
ness object mappings already generated for this function are now removed
(Customer.phoneNumber to getSupportLocation.number and Location
to getSupportLocation.location). Thus a single solution is obtained.

• Business function drawMap (CIM) is mapped to MapService.drawMap
(PIM).

To illustrate the reasoning process, we also give excerpt from the formalized
ontology representation using F-logic notation:

44

parameter[].

Location:parameter.

phoneNumber:parameter.

Customer:parameter[Name *=> string, phone *=> phoneNumber].

phoneLocation(phoneNumber,Location).

customerLocation(Customer,Location).

supportLocation(phoneNumber,Location).

customerLocation(C,L) :- X[phoneNumber -> P], P:phoneNumber,

C:Customer, phoneLocation(P,L).

The last rule says that the location L of a customer C is equivalent to deter-
mining the phone number P of the same customer, and then determining the
location L of that phone number.

Variant B: Parameters of the interface phoneService.getPhoneLocation
have no semantic annotations. The algorithm still offers the function get-
PhoneLocation as the potential correct solution, requires however manual con-
firmation through parameter annotation before proceeding further. Function
phoneService.getSupportLocation is eliminated as in the previous variant.

Variant C: Interface phoneService.getPhoneLocation is split into two in-
terfaces, setPhone(phoneNumer) and location calculateLocation(). Both
are compositely annotated with functional annotation phoneLocation. The al-
gorithm shall discover that both functions have to be invoked and furthermore
it will discover the call order using the input and output parameter annotations.

Variant D: Interface phoneService.getPhoneLocation is split into three
interfaces, setPhone(phoneNumber), calculateLocation() and location get-
Location(), where only calculateLocation is annotated with phoneLocation.
The algorith shall disover that all three functions have to be invoked, but it
will fail to determine the correct call order, if parameters are not additionally
annotated.

Variant E: If no functional annotations are present, the algorithm shall
present the choice between two compatible functions getSupportLocation and
getCustomerLocation.

Variant F: If the ontology is modified in such a way that it is not possible
to prove the equivalence of phoneLocation and customerLocation concepts, the
algorithm shall yield the unresolvable semantic conflict.

3.13 Summary of the Semantic Conflict Analysis Require-
ments

Based on the presented scenarios, the following requirements for the semantic
conflict analysis algorithm can be summarized:

45

• The algorithm shall enable mapping between CIM and PIM levels, effec-
tively checking if business process requirements are semantically matched
at the PSM/PIM level.

• The algorithm shall be able to check semantic matching between simple
(unstructured) business objects and parameters.

• The algorithm shall be able to check semantic matching between complex
(structured) business objects and parameters using decomposition.

• The algorithm shall be able to filter out irrelevant as well as optional data.

• The algorithm shall be able to discover semantic dependencies between
multiple interfaces and calculate correct invocation (call) order.

• The algorithm shall be able to detect semantically equivalent possibili-
ties to satisfy CIM to PIM as well as PIM to PIM requirements. It shall
furthermore offer backtracking to all semantically correct but discarded
parameter and interface combinations if subsequent conflict analysis pro-
cedures invalidate the scenario.

• The algorithm shall be able to recognize a deadlock in interface call order
based on semantic annotations.

• The algorithm shall be able to recognize collections of objects or parame-
ters and perform semantic matching between collection element and single
objects. For that purpose the algorithm shall generate collection iterators.

• The algorithm shall support integration of domain functions, if such are
included in the ontology.

• The algorithm shall support integration of connector function.

• The algorithm shall be able to import and read ontologies developed under
the ontology metamodel (see Section 1.1.5).

• The algorithm shall be able to use reasoning on the existing ontology to
discover relationships between concepts. Reasoning on multiple annota-
tions connected using logical operators shall be supported.

• The algorithm shall support integration of the business functions.

Based on these requirements, the semantic conflict analysis algorithm will
be formally defined in Section 6.1.

46

4 Conflict Analysis Algorithm

The BIZYCLE integration platform supports software and data integration
process through conflict analysis and resolution. It recognizes different types
of integration conflicts and suggests solutions. It is aimed to automate the
process, however there will be the cases where automatic detection and/or res-
olution is not possible. In such cases, notification to the integration specialists
is performed.

As information related to system integration is abstracted at the platform
independent level (PIM), it is possible to analyze different types of integration
conflicts regardless of the underlying technical platforms.

4.1 Conflict Types

The conflict analysis process described in this report is primarily based on plat-
form independent component descriptions, i. e. on the instances of the platform
independent metamodel (PIMM) introduced in Section 1.1.4. The following in-
tegration conflict types can be distinguished:

• Semantic conflicts address the semantical aspects of modeled integratable
elements. Semantic conflicts occur when compared entities that should be
integrated (interfaces, data or business objects, parameters etc.) differ in
the meaning they convey, that is, when semantically incompatible entities
are treated as equal, based on other properties such as their structure.

• Behavior conflicts concern the dynamic aspects of integratable elements
and are primarily caused by function constraints. For instance, a violated
pre-condition can cause a behavior conflict which would point at an invalid
function call order or incorrect functional capability.

• Property conflicts pertain to the characteristics of the integratable ele-
ments. Most notably, these are Quality of Service (QoS) properties (per-
formance, reliability, security etc.) in conjunction with several metrics
(duration, periodicity, units etc.), which describe requirements specified
by components to be integrated as well as requirements these components
have to fulfill.

• Structure conflicts concern the static aspects of the component descrip-
tion and are caused by differences in data structures, i. e. data types
and runtime values. It is important to note that both the analysis and
resolution of structural conflicts are based on the design time description
of values, not on the actual values at the runtime.

• Communication conflicts occur when the integratable elements differ in
communication aspects, e.g., use conflicting communication protocols or
incompatible kinds of messaging. The communication properties of a sys-
tem depend on a platform the system is running at. Communication
conflicts are resolved by generation of appropriate application endpoints.

47

With respect to the solution possibilities and its degree of automation, we dis-
tinguish the following types:

• Automatically resolvable conflicts can be resolved by a conflict analysis
tool without user interaction. In this case, the conflict resolution process
provides a deterministic solution plan to eliminate the conflict.

• Non-automatically resolvable conflict require at least one user interaction
to be resolved. There is at least one possible solution, but the conflict res-
olution process contains a non-deterministic plan to eliminate this conflict.
We also can say, the conflict is semi-automatically resolvable.

• Non-resolvable conflicts can be eliminated neither automatically nor semi-
automatically. In this case, the conflict analysis process should be aborted.
Non-resolvable conflicts can be caused not only by the incompatibility of
two integratable element but also by their incomplete description.

4.2 Overview of the Conflict Analysis Algorithm

In this section we give an overview of the conflict analysis and resolution al-
gorithm. We introduce in short each of the process phases and specify the
artifacts used and generated by the conflict analysis tool when executing these
phases. The conflict analysis process consists of five consecutive analysis phases
which handle conflicts of the corresponding type. The transition to the next
phase is possible only if in the current phase no non-resolvable conflicts could
be detected. The complete conflict analysis process is shown In Figure 37.

Performing the semantic conflict analysis in the first phase is plausible be-
cause the results of following analysis phases are meaningful only if the com-
ponents to be integrated are semantically conflict-free. The semantical analysis
phase uses following artifacts as inputs:

• Platform independent models (PIM) of integratable elements

• CIM model describing the integration scenario and the list of defined re-
quirements generated on its basis

• Domain ontology

The semantic analysis phase generates a list of requirement mappings as
output. Requirement mappings assign business requirements described in CIM
to the technical interfaces of the integratable element modeled in PIM in terms of
semantical aspects. However, the semantic conflict analysis is optional, e. g., in
case when appropriate ontology is not available. The integration specialist may
skip this phase and specify the appropriate requirement mappings manually.

The next two phases, behavior and property conflict analysis, are performed
in parallel. The reason is that descriptions of the functional constraints (behav-
ior) refer to the QoS properties and metrics defined in the Property package of
the PIMM. The inputs of the behavior and property conflict analysis phase are:

48

structureTransformations : MessageProcessorList

businessFunctions : MessageProcessorList

structureConflicts : StructureConflictList

semanticConflicts : SemanticConflictList

behaviorConflicts : BehaviorConflictList propertyConflicts : PropertyConflictList

mappings : RequirementMappings

Communication Conflict Analysis

Semantic Conflict Resolution

Behavior & Property Conflict
 Resolution

Structure Conflict Analysis

Semantic Conflict Analysis

Behavior & Property
Conflict Analysis

 : ApplicationEndpointList

Structure Conflict
Resolution

 : DomainOntology

Generate
connector(s)

 : PIM : CIM : APL

 : PSM : PIM : CCL

 : CIM : PIM

no valid CCL determinable

Does semanticConflicts contain
non-resolvable semantic conflicts?

Does structureConflicts contain
 non-resolvable conflicts?

Does behaviorConflicts or propertyConflicts
 contain non-resolvable conflicts?

Are mappings complete?

Mappings between literals of
business requirements and
interfaces (PSMs)

RED: Input
GREEN: Output

no

no

no

structureConflicts is empty

no yes

yes

yes

yes

CCL determinable

yes

Figure 37: Conflict Analysis Process
49

• Platform independent models of integratable elements

• Computational independent model

• Application Protocol Logic (APL) containing a set of execution paths for
interfaces involved in the integration scenario

• Requirement mappings from the previous analysis phase

The behavior analysis checks the control and data flows specified in CIM as well
as the results of the semantic conflict analysis (requirement mappings) against
the behavior constraints described by APL which was previously created by the
application specialist. The goal is to determine a conflict-free call order within
the connector logic, which would fulfill the business requirements defined in
CIM. As a result the behavior and property conflict analysis phases deliver
following artifacts:

• Connector Call Logic (CCL) containing a conflict-free interface (and mes-
sage processor) call order the connector should implement

• List of message processors which provide support for business solutions

The next phase, communication conflict analysis, deals with communication
properties of integratable elements. It requires platform-specific data delivered
by PSM. The results of this phase provide a basis for generation of application
endpoints.

The final phase of conflict analysis process is the structural conflict analysis,
addressing data type structure and the runtime value format to overcome struc-
tural heterogeneity. If the conflict resolution process succeeds (that means each
detected conflict were resolved), CCL, message processor list and application
endpoint list are used for connector generation.

50

5 Semantic Annotation

Within the BIZYCLE integration process, models at different levels of abstrac-
tion are created to enable the (semi-)automatic connector generation. The in-
tegration scenario with its abstract flow and data model is specified with the
computation independent model (CIM). Technical interfaces are modeled in
platform specific models (PSMs) that are transformed to platform independent
models (PIMs) for comparison and integration conflict analysis.

To further support an automated detection of interface conflicts we propose
semantic description of the integration scenario models at all levels of abstrac-
tion. In section 1.1.5 the ontology metamodel was introduced. The ontology
contains knowledge of the integration domain that is shared among different
integration models or integration projects. It can be refined and extended dur-
ing the projects. The association of heterogeneous artifacts such as documents,
service interfaces, business processes, web resources and models with semantic
concepts is called semantic annotation in general [34][20]. In the context of the
BIZYCLE integration, semantic annotation is a process of creating relationships
between the integration models at CIM, PSM, PIM level and the ontology con-
cepts. At meta-level an annotation metamodel (AMM) was developed, linking
all other metamodels within the BIZYCLE project to the semantic metamodel
and also supporting the integration of existing external platform specific meta-
models by adding associations between appropriate metaclasses. The advantage
of the intermediate metamodel is that all instantiated models are independent of
the semantic metamodel. Changes to models or even metamodels are managed
at a central point. This is approach similar to the model weaving [23].

Figure 38 gives a short overview of the relations between different meta-
models that are involved in an integration project. In the following sections
it is described which kind of semantic annotations are supported, which model
elements at all abstraction levels can be annotated with ontology concepts and
how the semantic annotations can be used and combined.

B
IZ

Y
C

L
E

M
e

ta
m

od
e

ls
E

xt
e

rn
a

l
M

e
ta

m
od

e
ls

CIMM

PSMM

PIMM

PSMM

PSMM

A
N

N
O

T
A

T
IO

N
 M

E
T

A
M

O
D

E
L

Semantic Metamodel /
Ontology

Figure 38: Semantic annotation metamodel relations

51

5.1 Data-oriented Annotations

The annotation metamodel supports two kinds of annotations: data-oriented
and function-oriented (see Section 5.2). The former is used to describe all model
elements that represent data at a certain level of abstraction. A knowledge con-
cerning data objects is expressed by creating instances of the DomainObject
(Section 1.1.5 or 3). A data-oriented annotation is defined as DomainObjectAn-
notation metaclass. On one side, all data-related metaclasses at the CIM, PSM
and PIM level are referenced (annotation source). On the other side it refers
to the DomainObject metaclass of the semantic metamodel (annotation target).
The relationships at different abstraction levels are described in the following
sections.

5.1.1 CIM Level Annotations

At the most abstract modeling level (CIM), data objects and their structure are
defined using the metaclass BusinessObject (CIMM). The annotation meta-
class of the AMM links it to the DomainObject of the SMM (Figure 39).

+targetFunction : BusinessFunction [0..*]
+sourceFunction : BusinessFunction [0..*]
+connection : Connection [0..*]
+part : BusinessObject [0..*]
+whole : BusinessObject [0..1]
+connector : BusinessConnector [0..*]
+name : String

BusinessObject

DomainObjectAnnotation DomainObject

(from AMM) (from SMM)

(from CIMM)

source

+cimBusinessObject

0..* +annotation

0..1

target

+domainObject

1..*+annotation

0..1

Figure 39: Semantic data annotation at the CIM level

5.1.2 PSM Level Annotations

At the PSM level, data annotations are provided for internal as well as exter-
nal metamodels. In the following sections we will discuss how annotations are
realized for exemplary platform specific metamodels.

PSM level annotations – SAP R/3
The platform specific metamodel for the SAP R/3 systems allows the mod-

eling of several data-oriented aspects of the SAP R/3 interfaces. An application
specialist can specify Business API functions (BAPI), that contain input and
output Parameter elements which are typed according to their content (ta-
bles, structures and simple types such as strings or integers). Furthermore
SAP R/3 systems offer document interfaces in terms of structured IDOCType
with DataRecord, Segment and typed Field elements. All of these metaclasses
are linked to the annotation metamodel to be able to declare the meaning of
the interface structure at respective levels of refinement. Figure 40 shows the
relations. For better readability all internal associations between SAP elements
have been removed.

52

+name : String [1]
+offset : Integer [1]
+int_length : Integer [1]
+pos_in_Segment : Integer [1]
+ext_length : Integer [1]

Field

DomainObjectAnnotation

+mandatory : Boolean [1]

Import

+name : String [1]
+mandatory : boolean [1]
+length : Integer [1]

...

Segment

+length : Integer [0..1]
+decimal : Integer [0..1]

FieldType

(from PSMMSAPJCO)

+name : String [1]

Parameter

+name : String [1]

SAPType

+name : String [1]

IDOCType

DomainObject

DataRecord

StructTypeTableType

(from SMM)

(from AMM)

Export

+sapParameter0..*

+annotation 0..1

source

+sapType0..*

+sapIdocField0..*

+sapIdocDataRecord

0..*
+sapIdocType0..*

+sapIdocSegment0..*

target

+domainObject1..*

+annotation0..1

Figure 40: Semantic data annotation at the PSM level – SAP R/3 systems

PSM level annotations – J2EE
Another platform that is supported by BIZYCLE are EJB components run-

ning in J2EE containers. They offer Enterprise JavaBeans with methods, that
have Input and Output parameters which are subject to semantic annotation.
The parameters have simple types (such as floats and integers), complex types
composed of Field elements as well as collections. In Figure 41 the annotation
associations to the J2EE metamodel are shown.

DomainObjectAnnotation

+name : String [1]
+number : Integer [1]

Parameter

(from PSMMJ2EEEJB)

+name : String [1]

Field

+name : String [1]

J2EEType

CollectionType

DomainObject

ComplexType

SimpleType

(from SMM)

(from AMM)

Output

Input

source

+j2eeParameter0..*

+annotation 0..1

+field

1..*source

-j2eeField

0..*

+j2eeType

1

target

+domainObject1..*

+annotation0..1

+j2eeType 1

+field 0..*

Figure 41: Semantic data annotation at the PSM level – J2EE systems

PSM level annotations – RDBMS
The metamodel for relational database management systems offers the Query

53

metaclass to describe a set of Input or Output Parameters as well as their re-
lationships. Parameters have a type, such as the JDBC interface types CHAR
or DATE. Input and output parameter sets corresponding to the database at-
tributes or aggregated and computed fields in record sets are semantically an-
notated as shown in Figure 42.

+name : String [1]
+isPrimKey : Boolean [1] = false
+encoding : Encoding
+type : SimpleType [1]
+collation : Collation

Parameter

DomainObjectAnnotation

+statement : String [1]
+name : String [1]

Query

INTEGER
CHAR
DATE
...

<<enumeration>>
SimpleType

(from PSMMRELDB)

DomainObject

SQLQuery

(from AMM)

(from SMM)

Output

Input

+parameter

1..*

+query

1

source

+relDbParameter0..*

+annotation0..1

target

+domainObject1..*

+annotation0..1

Figure 42: Semantic data annotation at the PSM level – RDBMS

PSM level annotations – external metamodels
In section 5 we have introduced the possibility of integrating external meta-

models for semantic annotation. As an example we present the annotation of
the XSD metamodel. With the XSD metamodel it is possible to define XML
schemas that describe the structure of XML documents. Usage of the meta-
model is necessary for data integration of XML files and for the description
of web service interfaces (WSDL). In Figure 43 a small excerpt of the XSD
metamodel is shown. We currently identified DocumentRoot, Group and Ele-
ment as annotatable elements. Since the AMM and SMM is implemented as
Ecore metamodel it is an easy task to model the relevant metaclasses of an
external metamodel and replace the according references to an existing Ecore
implementation.

5.1.3 PIM Level Annotations

The annotations illustrated in the previous sections enable semantic description
of data oriented interface elements at the PSM level. To carry out the conflict
analysis, a model-to-model transformation of the PSM models to PIM models
is performed. Semantic descriptions given at the PSM level are thus trans-
formed to the PIM level as well. The AMM offers the appropriate associations
to the PIMM. The PIMM encapsulates all data elements that can be anno-
tated with the AnnotatableElement metaclass. The specialized elements are
OOAtribute, OOParameter and TypedElement, such as parameters and fields of
complex types. With the reference from the AMM to the AnnotatableElement
it is possible to describe the precise meaning of every interface and deliverable
and/or consumable data on the abstracted PIM level.

54

DomainObjectAnnotation

TopLevelElementDocumentRoot

DomainObject

LocalElement ExplicitGroup RealGroup

(from XSD)

(from SMM)

(from AMM)

Element Group

source

+xsdDocument0..*

source
+xsdGroup0..*

-element

0..*

-element0..*

target

+domainObject1..*

+annotation0..1

source
+xsdElement0..*

+annotation 0..1

Figure 43: Semantic data annotation at the PSM level – External XSD meta-
model

DomainObjectAnnotation

-optional : Boolean [0..1]
-exclusive : Boolean [0..1]

Field

-description : String [0..1]

AnnotatableElement

WrappedParameterFunctionParameterDocumentElement WrappedAttribute

TypedElement

OOParameter

DomainObject

ListElement

OOAttribute

MapValue

(from SMM)

(from PIMM)

(from AMM)

MapKey

target

+domainObject1..*

+annotation0..1

source

+pimElement0..*

+annotation0..1

Figure 44: Semantic data annotation at the PIM level

5.2 Function-oriented Annotations

The AMM offers function-oriented annotations, too. These annotations are
aimed at describing the meaning of the computational and processing behav-
ior of the elements such as remote functions, database queries or Web service
methods. The class DomainFunction from the semantic metamodel is used to
assign this meaning to a model element. The AMM establishes a relationship
between a functional element at the CIM, PSM or PIM level and the domain
function from a given ontology using the DomainFunctionAnnotation element.

Figure 46 shows the elements from the CIM, PSM and PIM levels that may
be annotated using functional semantics. At the CIM level, BusinessFunction
and ConnectorFunction convey the processing semantics of the integratable
systems and connectors respectively. Thus they are annotated with domain
function annotations.

At the PIM level, all three supported interface types, FunctionInterface,

55

+inputBO : BusinessObject [0..*]
+outputBO : BusinessObject [0..*]
+description : String

BusinessFunction

+name : String [1]
+instance_independent : Boolean
+instance_generating : Boolean

Method

DomainFunctionAnnotation

+name : String [1]

SAPBusinessComponent

+name : String [1]

EnterpriseJavaBean

ConnectorFunction

+name : String [1]

SAPBusinessObject

DocumentInterface

+statement : String [1]
+name : String [1]

Query

+name : String [1]
+Transaction : String

Method

FunctionInterface

(from PSMMSAPJCO)

+name : String [1]

SAP_R3_Interface

(from PSMMJ2EEEJB)

StoredProcedure

MethodInterface

DomainFunction

(from PSMMRELDB)

+name : String [1]

SQL_Interface

-name : String

Interface

(from SMM)

(from PIMM)

(from AMM)

(from CIMM)

BAPI

+relDbQuery0..*

+relDbSqlInterface

0..*

+sapMethod

0..*

+j2eeMethod

0..*

+annotation

0..1

+sapBusinessObject

0..*

+j2eeEJB

0..*

+sapBusinessComponent

0..*

+pimInterface

0..*

+cimBusinessFunction

0..*

+sapInterface

0..*

target

+domainFunction

1..*

+has_BusinessObject 1..*

+query

0..*

+has 1..*

+has_BusinessComponent 1..*

+method1..*

+enterpriseJavaBean1

+query 1..*

+sqlInterface 1

Figure 45: Functional semantic annotation

MethodInterface and DocumentInterface are annotatable via domain func-
tion annotations. At the PSM level, functionally-annotatable metaclasses differ,
depending on the metamodel. In SAP R/3 systems, the following metaclasses
have the processing semantics, and are thus functionally annotated: SAP R3 -
Interface, SAPBusinessComponent, SAPBusinessObject, Method and BAPI.
Note the varying degree of granularity of these metaclasses, allowing to specify
functional semantics of more or less entire SAP interface on one side, as well as
single remotely accessible BAPI function on the other. The J2EE metamodel
exposes similar possibility: either the entire bean can be functionally annotated
as the source of the application functionality, or the separate remote methods
can be individually annotated. Finally, for the relational database manage-

56

ment system, we treat queries as functionality carriers, and allow the functional
annotation of SQL queries and stored procedures accordingly.

5.3 Logical Operators

Apart from the annotation metaclasses, the AMM also offers means to combine
(group) annotations using logical operators. Depending on the refinement of the
ontology and the specified integration scenario at the CIM and PSM/PIM level,
business architects, application specialists and integration specialists must have
the possibility to annotate a model element with more than one meaning or to
annotate several model elements together with one concept from the ontology.
The annotation metamodel offers three logical operators (AND, OR, XOR) as
shown in Figure 46.

DomainFunctionAnnotationDomainObjectAnnotation

+name : String

AnnotationElement

LogicalOperator

DomainFunctionDomainObject
(from SMM)

AND XOROR

link

+annotationElements

2..*

+operator 1

target

+domainFunction1..*

+annotation0..1

target

+domainObject1..*

+annotation0..1

Figure 46: Annotation metamodel core and logical operators

The metaclass LogicalOperator links two or more AnnotationElement,
that can either be annotations or other operators. Thus it possible to create
nested composition of operators such as (Identifier) || (First name && Last
name). The association link is navigable from the operator to the annotation
element only, to determine the nesting direction.

5.4 Applications of Semantic Annotation

The logical operators described above, the 1..* cardinality of a semantic anno-
tation to the semantic metamodel elements and the references to all supported
metamodels (CIMM, PSMM, PIMM), allow for various combinations of seman-
tic descriptions with a large degree of expressiveness. It is possible to build
containment, alternatives, composition and multiple representation expressions.
Furthermore, traceability of information is supported by linking model elements
of different abstractions levels. The linkage of different types of models must
be used carefully, because an instantiation of the annotation metaclasses could
lead to unreasonable combinations of model elements. The following source link
combinations (see previous sections) are allowed:

57

• Multiple source references of a single annotation are limited to elements
of the same model (either CIM, or PSM, or PIM), except for PSM and
PIM links, if the PIM elements have been obtained from respective PSM
elements by model-to-model transformation (see section 5.4.6).

• The combination of multiple annotations by logical operators is limited to
elements of the same source model (either CIM, or PSM, or PIM).

In the following sections a short overview of the relevant annotation alter-
natives is described.

5.4.1 Single Representation Annotations

The simplest case of the semantic annotation is the 1:1 relationship of a model
element with a concept of the ontology. Figure 47 illustrates a CIM business
object annotation as an example. At the right side an excerpt of an ontology
is shown, that defines the domain object Address, which consists of several sub-
concepts (Lastname, Street, etc.). In the annotation model one domain object
annotation is created, that links Shipping address at the CIM level to the
Address concept from the ontology. To reduce the effort of annotation the link
means that the shipping address at the CIM level is an address and implies all
of the sub-concepts that are associated with has-predicates in the ontology.3 If
the annotation should be more precise (e.g., individually selecting some of the
sub-concepts), either containment annotation or business object refinement is
necessary.

The single representation annotation is applicable for data-oriented and
function-oriented annotations of the CIM and PSM/PIM models.

 : BusinessObject

name = "Shipping address"

 : DomainObjectAnnotation

Computation independent model
 : DomainObject

name = "Country"

 : DomainObject

name = "Firstname"

 : DomainObject

name = "Town"

 : DomainObject

name = "Lastname"

 : DomainObject

name = "Street"

 : DomainObject

name = "Zipcode"

 : DomainObject

name = "Address"
 : Has : Connection

Annotation model

Ontology

 : transports

 : target : source

Figure 47: Annotation with a single domain object representation

5.4.2 Multiple Representation Annotation

Multiple representations occur when a certain model element has more than one
meaning at the same time (logical conjunction). Figure 48 shows an example

3The implementation of the annotation component should leave that at the user’s choice.

58

of the interface annotation at the PIM level. The function interface exposes
an import parameter shopCust, that serves as input to retrieve a customer
object from the Webshop system. The Webshop system expects a parameter
that represents both CusomerName and CustomerID, which means that it has
a semantic of a name, but at the same time of a primary key (identifier). An
example may be a VARCHAR field from a database that is defined as primary
key. In the example two annotations are created to link the parameter to the
appropriate domain objects of the ontology. After that, both annotations are
linked with the AND operator. That results in the expression CustomerID
&& CustomerName. Functional annotations can also be combined in such a
way that a single interface represents different functionality depending on its
parameters.

The multiple representation annotation is applicable for data-oriented anno-
tation of CIM (limited) and PSM/PIM models.

 : DomainObject

name = "CustomerID"

 : DomainObject

name = "CustomerName"

 : DomainObjectAnnotation

 : DomainObjectAnnotation

 : FunctionInterface

name = "getCustomer"

Platform independent model

 : ImportParameter

name = "shopCust"

 : AND

Annotation model Ontology

 : source

 : source

 : link

 : target

 : target

 : link

 : hasParameter

Figure 48: Multiple representation annotation

5.4.3 Containment Annotation

The containment annotation is used when a certain model element has a rough
level of detail or does not have a representation in the ontology, but it can be
composed of several concepts. It can also be used to select a set of sub-concepts
if the single representation annotation (see section 5.4.1) is not adequate. Fig-
ure 49 shows an example of the containment annotation. It is realized by cre-
ating a single domain object annotation with multiple references to the domain
objects. The expression means that the Shipping address defined in the CIM
level is composed of Firstname, Lastname, Street, Zipcode, Town concepts.

As an alternative the content description at the CIM level can be achieved
by explicitly creating structured business objects and using the single repre-
sentation annotation. At the PSM/PIM level such a refinement is not possible
because of the immutable interface structure of the underlying systems, so the
containment annotation can be used when needed.

An implementation of the containment annotation must assure that the mul-
tiple references of the domain object annotation do not link concepts of different
hierarchies, e.g., a containment annotation with Address and Firstname at the

59

 : BusinessObject

name = "Shipping address"

 : DomainObjectAnnotation

Computation independent model

 : DomainObject

name = "Firstname"

 : DomainObject

name = "Town"

 : DomainObject

name = "Lastname"

 : DomainObject

name = "Country"

 : DomainObject

name = "Street"

 : DomainObject

name = "Zipcode"

 : DomainObject

name = "Address"
 : Connection : Has

Annotation model

Ontology

 : target

 : target

 : target

 : target

 : target

 : source

 : transports

Figure 49: Containment annotation

same time is not allowed.
The containment annotation is applicable for data-oriented and function-

oriented annotation of CIM and PSM/PIM models.

5.4.4 Alternative Annotation

Alternative meanings (logical disjunction) of model elements is mainly observed
in interface descriptions that have a fixed output data structure, but the data
exchanged through the interface varies depending on input parameters. Sec-
ondly, it can also signify mixed content, that does not have a single knowledge
representation. Both cases are annotated using multiple annotations linked with
the OR- or XOR-operator. In Figure 50 an example is illustrated in which the
export parameter customers depends on the input parameter flag. To seman-
tically express that either ActiveCustomers or InactiveCustomers are returned,
the XOR-operator is used. If the OR-operator is used, the semantic descriptions
means that both active and inactive customers may be returned.

The alternative annotation is applicable for data-oriented and function-
oriented annotation of CIM and PSM/PIM models.

5.4.5 Compositional Annotation

The compositional annotation can be used if a model and its elements have a
high level of detail and a direct match to ontology elements is not possible. In
that case several model elements are considered together as a single knowledge
representation. A compositional annotation is created with a single annotation
instance, which references multiple source model elements. An example of such
annotation is depicted in Figure 51. It shows a part of a J2EE system with
an Enterprise JavaBean offering three methods. Together they realize the sum-
mation of a price list, but the interface structure requires separate consecutive
calls.

60

 : DomainObject

name = "ActiveCustomers"

 : DomainObject

name = "InactiveCustomers"

 : DomainObjectAnnotation

 : DomainObjectAnnotation

 : FunctionInterface

name = "getCustomers"

Platform independent model

 : ExportParameter

name = "customers"

 : ImportParameter

name = "flag"

 : XOR

Annotation model Ontology

 : source

 : source

 : link

 : target

 : target

 : link

 : hasParameter

 : hasParameter

Figure 50: Alternatives annotation

The compositional annotation is applicable for data-oriented and function-
oriented annotation PSM/PIM models.

 : DomainFunctionAnnotation
 : DomainFunction

name = "PriceSummation"

J2EE platform specific model

 : Method

name = "setPriceList"

 : Method

name = "setCurrency"

 : Method

name = "calc"

 : SessionBean

name = "priceCalc"

 : J2EE_Interface

name = "calculation"

Annotation model Ontology

 : source

 : source

 : source

 : target

Figure 51: Compositional annotation

5.4.6 Multilevel Annotation

In the previous sections we have described the possibilities of semantic annota-
tions that are mainly used to enable the semantic conflict analysis. The usage of
annotations proposed so far is limited to single abstraction levels. Additionally
the annotation metamodel provide means for the traceability of information. In
the following an example is described that makes use of linking model elements
on different levels of abstraction for the purpose of establishing transformation
traces.

During the BIZYCLE integration process platform specific models are trans-
formed to platform independent level to perform the conflict analysis. The se-
mantic descriptions of the interfaces are created at PSM level, therefore they
have to be transfered to PIM level as well. During the model-to-model trans-
formation the annotation model is used as second input. The transformation
rules create all PIM model elements according to the PSM. For each annotated
PSM element, a reference to the corresponding PIM element is added to the
annotation element. The transformation not only creates a platform indepen-
dent model, but enriches (extends) the annotation model. Figure 52 illustrates

61

 : Export

Parameter = "CUSTOMER_OBJECT"

---> model transformation --->

 : ExportParameter

name = "CUSTOMER_OBJECT"

 : Import

Parameter = "CUSTOMER_ID"

 : DomainObject

name = "CustomerIdentifier"

 : BAPI

name = "GET_CUSTOMER"

 : FunctionInterface

name = "GET_CUSTOMER"

 : DomainObject

name = "CustomerName"

 : ImportParameter

name = "CUSTOMER_ID"

 : DomainObjectAnnotation : DomainObjectAnnotation

SAP platform specific model Platform independent model

 : DomainObject

name = "Customer"

name = "..."

 : DomainObject

Annotation model

Ontology

 : Has : Has : Has

 : source : source

 : target

 : source

 : hasParameter

 : source

 : hasParameter

 : target

Figure 52: Semantic annotation for model transformation traces

an example of the SAP model transformation. Before the transformation, the
SAP import and export parameters on the left side are annotated with the
corresponding domain objects. The references to newly added PIM elements
(ImportParameter and ExportParameter) are created during the transforma-
tion. Later, the PIM import parameter can be identified as being generated
from the SAP BAPI import parameter through the domain object annotation.
An identification based on names is not distinct. Furthermore, the transforma-
tion traces help application specialists to recognize the system’s models during
decisions in the conflict analysis.

62

6 Semantic Conflict Analysis

In this chapter, the semantic conflict analysis algorithm will be formally de-
scribed. After that a metamodel is introduced, that is used to represent the
results of the analysis. Furthermore, analysis examples will be given. Finally,
as the algorithm is described in the language-independent manner using the
UML activity diagrams, the chapter concludes with the overview of the current
Prolog implementation.

6.1 Algorithm Description

In the previous chapters the premises for the semantic conflict analysis have
been described. To sum up, the following artifacts (models and relations) have
to be available for the semantic conflict analysis:

• Ontology, containing semantic definitions from a domain that is relevant
for the integration scenario

• Computation independent model, describing the scenario and its require-
ments

• Platform independent models of the systems to be integrated, obtained
by PSM transformations

• Annotation model containing the semantic annotations of the CIM and
PIM elements

• Mapping model describing predefined mappings between business compo-
nents (CIM) and integratable elements or their interfaces (PIM)

The goal of the semantic conflict analysis is to perform semantical matching
of the corresponding models, by establishing equivalent or compatible model
elements using logical reasoning. The matching is performed at two levels:
CIM-PIM, where business requirements (CIM) are matched against technical
infrastructure (PIM), and PIM-PIM, where the semantic compatibility of the
underlying systems which implement the integration scenario is investigated.
The results of the semantic conflict analysis are mappings of data requirements
to the underlying interface elements, mappings of required to provided interface
elements and mappings of functional requirements to interfaces. The mappings
thus mark the compatible (matched) interface elements. They are also used as
a basis for the further conflict analysis phases. In case a semantic description
of the models is not available or incomplete, the mappings are created auto-
matically as far as possible and the remaining requirements have to be mapped
manually. Figure 53 shows how artifacts such as models and annotations par-
ticipate in the conflict analysis process as well as their relationships.

In the following sections the semantic conflict analysis algorithm is divided
into several functional parts. Each part will be described by an activity diagram
and additional explanation. The activity diagrams include actions and control
flow to describe the process of the algorithm as well as objects nodes and ob-
ject flow to define the produced or consumed artifacts of the algorithm. The

63

Annotation model Semantic
Conflict
Analysis

PIM n

PIM 2

PIM 1

Mappings

PIM 2

PIM n

CIM

PIM 2

CIM

Conflicts

Ontology

PIM 1

PIM 1

CIM

PIM n
export mappings

export mappings

import mappings

function
mappings

System 2System 1 System n

Scenario
conflict!!

Figure 53: Model relations during semantic conflict analysis

algorithm description in this report is language and technology independent.
Currently it is realized in Prolog, as described in Section 6.4.

6.1.1 Algorithm Overview

The semantic conflict analysis algorithm is described in a top-down approach,
starting at an abstract level shown in Figure 54. The activities are refined and
described in the subsequent subsections. At the top of the figure the model
artifacts used during the algorithm are shown. For better readability of the
diagram their object flows are not shown, because the are used in almost every
activity.

The conflict analysis creates data-oriented and function-oriented require-
ments defined at the CIM level and then maps those requirements to the in-
terface descriptions at the PIM level (requirement mappings). The CIM-PIM
mapping model (MM) constraints the search space of interface descriptions. We
differentiate between business object import and export requirements and busi-
ness function requirements (definitions of the integration specialist) and import
element requirements that occur during the conflict analysis of interface descrip-
tions. All types of requirements are identified and mapped by the algorithm.

If all requirements are not fulfilled (mapped), the algorithm employs seman-
tic reasoning to handle the unmapped requirements. Requirement identification
and mapping are performed recursively to check whether newly generated map-
pings introduce additional requirements.

After recursion, data mappings are checked against functional mappings.
The verification is necessary to eliminate possible wrong solutions in which
interface parameters and elements match, but an interface provides a different
functionality than required by a business function at the CIM level.

Furthermore an integration specialist has the option to manually map re-
quirements that are still unfulfilled for business objects, functions and import

64

elements. Furthermore, the algorithm identifies all possible requirement map-
pings. If multiple sources and targets are found, one can choose between them
or keep the alternatives for further analysis phases.

Verify business object
requirement mappings

against business function
requirement mappings

Import element
requirement mappings

Get business object
import and export and

business function
requirements

Business function
requirement mappings

Business object
requirement mappings

Create business
function requirement

mappings

Create business
object requirement

mappings

Get additional
interface element

requirements

Create import
element

requirement
mappings

Get unfulfilled
requirements

Get unfulfilled
requirements

Semantic
reasoning

Ontology

Business function
requirements

Import element
requirements

Annotation model

Business object
requirements

Manual
mapping

PIMsCIM MM

 [new
mappings
created]

 [new required
elements
identified]

 [else]

 [else]

Figure 54: Semantic Conflict Analysis Overview

65

6.1.2 Get Business Object Import and Export and Business Func-
tion Requirements

Figure 55 shows refinement of the activity Get business object import and export
and business function requirements in diagram 54. This activity creates the re-
quirements according to the CIM business object and function definitions. All
business objects and business functions of the integration scenario are iterated.
If the business object’s connection is linked to an export business interface, a
business object export requirement is created. The same applies for import.
Export and import requirements are not created if the connection is linked to
a connector function instead of an interface. In this case the CIM explicitly
defines that a certain functionality of the connector is used or generated, hence
a matching interface of an existing system does not have to be identified. Busi-
ness function requirements are created for each annotated business function.
The function requirements specify that for each annotated business function an
adequate implementation at the PSM/PIM level must be found. The require-
ments are used in the following activities to record mapping tasks and to avoid
irrelevant searching while checking interface element dependencies.

<<iterative>>

Get connection of
busines object

Business object

Create export
requirement

Create import
requirement

<<iterative>>

Create business
function requirement

Business function

Business functions

Business function
requirements

Get all business
objects

Business objects

Business object
requirements

Get all busines
functions

CIM

 [else]
 [connection

linked to
import

interface]

 [else]

 [connection
linked to
export

interface]

Figure 55: Generate business object import and export and business function
requirements

66

6.1.3 Create Business Object Requirement Mappings

Figure 56 shows the refinement of the activity Create business object require-
ment mappings from diagram 54. The activity iterates over all previously cre-
ated business object requirements and tries to find PIM elements that match
the requirements using semantic annotations. Predefined mappings of business
components to PIM interfaces or integratable elements in the mapping model
(MM) are considered (if available) to avoid matching with superfluous under-
lying systems. The matched elements are iterated according to their usage in
interfaces and complex types (context path) and a mapping is created for each
context. Because of the type system at the PIM level, fields can have multiple
occurrences when used in complex types of different parameters. To keep the di-
agram compact, export and import direction of requirements and PIM elements
are not explicitly separated. If export requirements are processed, only export-
ing PIM elements are searched, likewise is done with import requirements and
importing PIM elements. The result of the activity is a list of business object
import and export requirement mappings.

<<iterative>>

<<iterative>>

Create business object
requirement mapping

PIM element Interface Context path

Matched PIM elements
result list

Semantic annotations

Get semantic
annotations of

business object

Business object
requirement

Get all
integratable

elements

Find PIM
elements

Business object
requirement mappings

Business object
requirements

Annotation
modelPIMs MM

Export and import direction is not
differntiated to minimize double actitivy
trees. The algorithm applies for both.

 [semantics not available]

 [else]

Figure 56: Map business objects to export and import PIM elements

67

6.1.4 Create Business Function Requirement Mappings

Figure 57 shows the refinement of the activity Create Business Function Re-
quirement Mappings. Business functions are mapped to technical PIM interfaces
similar to the mapping of business objects. The algorithm considers all business
function requirements and tries to find all possible matching PIM interfaces and
combinations of them according to the functional semantic annotations. The
result of the activity is a list of business function requirement mappings that
fulfill the business function definitions at the CIM level. These mappings are
used later to verify the usage of interfaces in business object mappings, that may
have a structural match (accept the same parameters) but differ in functionality,
that is, in how the parameters are processed.

<<iterative>>

<<iterative>>

Create business function
requirement mapping

Interfaces

Matched PIM interface
result list

Semantic annotations

Get semantic
annotations of

business function

Business function
requirement

Get all PIM
interfaces

Find PIM
elements

Business function
requirement mappings

Business function
requirements

Annotation
modelPIMs MM

 [semantics not available]

 [else]

Figure 57: Map business functions to PIM interfaces

68

6.1.5 Find PIM Elements

The Find PIM elements activity shown in figure 58 is used in three different
parts of the algorithm. It generically describes how different model elements are
matched according to their semantic annotations. First, the activity is invoked
while creating the business object requirement mappings. In that context the
source element of the comparison is a business object at the CIM level, whose
semantic annotations are used to match (a set of) PIM data elements, such
as parameters or fields of complex types. Secondly, importing PIM data el-
ements are semantically matched against exporting PIM data elements while
creating import element requirement mappings. Finally this activity is used by
the create business function requirement mappings activity, in which semantic
annotations of business functions at the CIM level are matched with interface
annotations at the PIM level. The algorithm matches model elements according
to the five annotation types: single representation, multiple representation, al-
ternative, containment and compositional annotation (refer to section 5.4), split
into separate activities.

Find PIM elements that have a
single match / one alternative or

containment match /
composition match with the
semantic annotations of the

source element

Find PIM elements that
have a single match / one

alternative or containment
match / composition match

 with the semantic
annotations of the source

element

Find PIM elements that
have a match with the

alternatives of the
semantic annotations of

the source element

Find sets of PIM
elements that have

union match with the
semantic annotations
of the source element

Find PIM elements that
have a match with the

same multiple
semantic anotations of

the source element

Matched PIM elements
result list

Matched PIM
elements / sets

Semantic annotations
of business object /
import parameter /
business function

Build PIM element
result list

Determine source
element

annotation type

Get annotated
PIM elements

PIM elements

PIMs

Export and import direction is not
differentiated to minimize double activity
 trees. The algorithm applies for both.

data element matching:
parameters, list elements, fields,
choices, map keys, map values

function matching: interfaces

Only applies for PIM
element to PIM element
matching and function
matching

 [Compositional annotation] [Single representation]

 [Containment annotation]

 [Multiple representation]
 [Alternative annotation]

Figure 58: Find PIM elements according to the semantic annotation

There are several possible combinations that result in a correct semantic
match of model elements (CIM business object to exporting/importing PIM
data elements; PIM importing elements to PIM exporting elements; CIM busi-
ness functions to PIM interfaces). Figure 59 shows the annotation types in
relation to each other. Each of the small images shows the source element(s)

69

(filled squares at top) and the target PIM elements (white squares at bottom) in
relation to concepts of the ontology (filled ellipses in the middle). Note that the
compositional annotation is not applicable to business objects, therefore the last
column is only valid for interface element matching and functional matching.

��������	�
���
��

��������	�
���
��

������
���	�
���
�
����

���������
���	�
���
�
����

����	�
���� �����
���� ����
�������
�����
����

�����
�����
�
�����
����
���������

�������
���	�
���
����
�����
����

�

���������
���	�
���
����
�����
����

� � � �

����	�
����
�����
����

� �

����
�������
�����
����

�

�����
�����
�
�����
����

�

	
�

	
�

�

	
�
�

�	

�

�	

�

���

���

	
�

	
�

Figure 59: Model element matching depending on annotation types

All annotation types match with themselves. A single representation anno-
tation matches with a part of the XOR-alternative annotation and with a part
of the containment annotation. It also matches with compositional annotation,
where multiple target elements compose the same ontology concept. The mul-
tiple representation annotation does not match with other types except itself.
The alternative annotation with the OR-operator matches with a set of single
annotations and the containment annotation. XOR-annotations match with all
types except multiple annotation, because one of the alternatives is sufficient.

We will describe in more detail the matching of the containment annota-
tion as source element annotation (fifth column in Figure 59) with the other
types, in the context of processing a business object export requirement. This
kind of requirement means that the integration process requires the export of
certain data, represented by the business object at the CIM level. The contain-
ment annotation is used if the business object’s level of detail is coarse and the
concepts of the ontology are more detailed (imagine Customer data annotated
with concepts Address, Bank Account). If such an annotation is processed, one
or more matching interface elements at the PIM level should be located, based
on their annotations. A direct match with an equal containment annotation is

70

obvious. Alternative annotation does not directly match, because containment
demands the presence of all single elements together, neither does the multiple
representation annotation, because this type implies polymorphy. Single repre-
sentation matches containment if a set of exporting PIM interface elements can
be found that has a union match (e. g., one interface parameter annotated with
Address and a second with Bank Account). Compositional annotation matches
containment if multiple PIM elements are annotated together with an equal set
of ontology concepts (e. g., interface parameters Name, Street, Town together
annotated with Address, and another parameter set of Name, AccountID and
BankID annotated with Bank Account). Mixed combinations are possible, e. g,
one single representation annotation and one part of an XOR-alternative an-
notation. Finding such sets of interface elements will result in a mapping that
fulfills the requirement defined by the business object.

Compositional annotation links multiple source PIM elements to a single con-
cept of the ontology. Therefore the search strategy for target elements conforms
to the matching of single annotations. During the iteration of requirements it
can happen that multiple source elements are mapped, of which some have not
yet been iterated. The algorithm verifies whether it processes such elements.

The empty cells in Figure 59 marked with X show that a direct match
between the two annotation types is not possible. Additionally mixed combina-
tions are possible as described previously (not illustrated in the table).

6.1.6 Build PIM Element Result List

After having identified PIM elements, the results have to be checked regarding
their usage in different interfaces. The PIMM offers metaclasses to describe a
type system in which the structural model elements can be reused among differ-
ent types and parameters (see section 1.1.4). Matched parameters are unique,
but e. g., matched fields of complex types can have multiple occurrences, if the
complex type is used for different parameters or even again for fields. Figure 60
illustrates the algorithm for iterating all matched PIM elements to determine
their multiple usage. The activity does not apply to matched interfaces for
business functions.

Suppose that a structural model at the PIM level defines a complex type
CustomerName that consists of the fields firstname and lastname. That type
is once used for an export parameter customer of interface getCustomer as well
as for import parameter cust of interface saveCustomer. If the field lastname is
matched by the algorithm, the result leads to two possibilities of requirement
mappings (one export and one import mapping). The context paths for this
example are:

• getCustomer.customer.CustomerName.lastname

• saveCustomer.cust.CustomerName.lastname

71

<<iterative>>

<<iterative>>

Create result list entry
with Interface, Context
path and PIM element

Get PIM element
interface context

Interface

Context
path

Get all interfaces
in which the PIM
element is used

PIM element

Interfaces

Matched PIM elements
result list

Matched PIM
elements/sets

Figure 60: Build PIM element result list of matched PIM elements

6.1.7 Get Additional Interface Element Requirements

Figure 61 shows the Get Additional Interface Element Requirements activity
refinement, that was defined in diagram 54. The activity determines additional
requirements for import elements that have to be passed to an interface. As
explained in the previous sections, business object requirement mappings have
been created which refer to a certain set of interfaces. These interfaces are
taken into account for the further analysis of import elements (parameters,
fields, etc.). Import element requirements are checked recursively, because gen-
erated requirement mappings can introduce new interface dependencies. If the
algorithm finds elements that are already mapped or required, a new require-
ment is not created to determine the end of the recursion and to avoid interface
cycles. As described in the previous section, import elements of complex types
can be reused. Requirements are created for each use.

72

<<iterative>>

<<iterative>>

Create import element
requirement

Import element

Import elements

Get all import
elements

Interface

Get all used interfaces
in business object

requirement mappings

Business object
requirement mappings

New import element
requirements

Get all used
interfaces in import
element mappings

Import element
requirements

Import element
mappings

Interfaces

 [element already mapped]

 [element already existing]

Figure 61: Generate requirements for import elements

73

6.1.8 Create Import Element Requirement Mappings

The refinement of the CCreate Import Element Requirement Mappings activity
shown in figure 62 iterates the previously created import element requirements
and searches for exporting PIM elements that semantically match. Multiple
export possibilities are considered (also according to the usage of PIM elements
in different interfaces) and a mapping is created for each of them. This activity
makes use of the Find PIM elements described in section 6.1.5, because the
matching of business objects to PIM elements is similar to the PIM element
matching (except for the explicit direction and use of compositional annota-
tions). The algorithm searches in all available interfaces descriptions, that may
optionally be constrained by the CIM-PIM mapping model. If an exporting
element is found, and the interface has not yet been analyzed, it will be queued
for further analysis of parameter dependencies.

<<iterative>>

<<iterative>>

Create import element
requirement mapping

PIM element Interface Context path

Matched PIM elements
result list

Find PIM
elements

Import element
requirement

Import element

Get import
element

Import element
requirement mappings

Import element
requirements

Annotation model PIMs

Figure 62: Create mappings for import elements depending on exporting PIM
elements

74

6.1.9 Semantic Reasoning

After the iteration of the five major analysis steps for business objects, import
elements and business functions (see diagram 54), requirements and dependen-
cies may still not be satisfied. Semantic reasoning will be used, if n:m matching
of annotations is not sufficient. The semantic reasoning part of the algorithm
describes how additional mappings can be identified by reasoning over the on-
tology, the CIM/PIM and annotation models. Figure 63 shows the general
procedure of the iteration of unfulfilled requirements, the different reasoning
strategies are described in Section 6.1.10.

<<iterative>>

<<iterative>>

Create business object /
import element / business

 function requirement
mapping

PIM element Interface Context path

Matched PIM elements
result list

Business function
requirement

Import element
requirement

Find PIM
elements with

semantic
reasoningBusiness object

requirement

Import element
requirement mappings

Business object
requirement mappings

Business function
requirement mappings

Unfulfilled
business function

requirements

Unfulfilled
import element
requirements

Annotation modelUnfulfilled
business object

requirements PIMs

Figure 63: General procedure of semantic reasoning for unfulfilled requirements

75

6.1.10 Find PIM Elements with Semantic Reasoning

Figure 64 shows the activity Find PIM elements with semantic reasoning, that
includes the strategies to identify interfaces and interface elements for unfulfilled
requirements. All relevant models are transformed into facts of a particular rea-
soner language. Afterwards the reasoning engine applies the rules illustrated
in the figure. The results are transformed back to our model infrastructure
and then are added to the previously created mappings. After semantic reason-
ing, the recursion follows back to the activity Get additional interface element
requirements (see figure 54 on page 65) to analyze additional found interfaces.

Rule 5 - Use knowledge about domain
function composition definitions

Rule 1 - Use knowledge about
domain functions inputs/outputs

Rule 4 - Use knowledge about domain
object containment definitions

Rule 6 - Use knowledge about domain
object equivalence and domain
function equivalence definitions

Rule 2 - Use knowledge about
domain object sets definitions

Rule 3 - Use knowledge about domain
object generalization definitions

Unfulfilled requirements

Transform results to
model elements

Transform models to
formal language

Matched PIM elements
result list

Annotation model

Apply rules

Facts

Results

PIMs

CIM

Figure 64: Strategies of reasoning to resolve semantic conflicts

We defined the following rules that utilize the knowledge of defined predicates
in the ontology. Rule 1 evaluates Input and Output of domain functions to
locate implementations that can be used for data transformation. Consider an
interface with import parameter A annotated with the concept α and a second
interface with export parameter B annotated with the concept β. All domain
functions Fi and their respective implementations are discovered, that have α
as output and β as input. If an implementation is not available, a transformer
connector function stub is generated.

Rule 2 investigates the ontology knowledge of ListOf-predicates to find in-
terface elements that deliver data sets of which single elements can be extracted.
Imagine import parameter A annotated with the concept α. The rule finds all
exporting interface elements Bi annotated with βi, where βi ListOf α. The
result requires connector functions, that iterate data sets and call interfaces
consecutively.

Rule 3 uses generalization definitions (IsA) in the ontology. Consider import
parameter A annotated with the concept α. The rule matches all exporting in-
terface elements Bi annotated with βi, where βi is a specialization of α. The
result requires a connector function, that transforms the objects of import para-

76

meter A into the representation of Bi by filtering out all specialized information
of Bi.

Rule 4 evaluates the containment definitions in the ontology, that are ex-
pressed between domain objects by has-predicates to find composable parts of
unmatched interface elements. If an import parameter A annotated with con-
cept α cannot be satisfied, the rule processes all set of concepts β1...βn that
are referenced with the has-predicates. If for each βi an exporting interface
element Bi can be found, A is composed of Bi. The results require aggregating
connector functions.

Rule 5 is the equivalent to rule 4, except that it uses functional instead
of object composition. Domain functions and their implementations are com-
posed to fulfill a business function requirement. Functional composition must
be further validated by the behavior conflict analysis to comply with pre- and
post-conditions.

Finally, rule 6 takes equivalence information into account, that is explic-
itly defined by IsEquivalentTo-predicates in the ontology. Consider business
function A annotated with domain function α. The rule identifies all domain
functions βi, where βi IsEquivalentTo α.

6.1.11 Verify Business Object Requirement Mappings against Busi-
ness Function Requirement Mappings

Before the integration specialist has the option to manually map unfulfilled re-
quirements, the semantic conflict analysis cross-checks all created business ob-
ject requirement mappings with business function requirement mappings. The
additional verification is necessary because a semantic mapping based on data-
oriented information only could lead to false positive matches. Identified in-
terface elements can match, but the provided or required interface implements
different functionality than specified at the CIM level. Refer back to scenario 7
(section 3.12) in which getPhoneLocation and getSupportLocation have the
same import and export parameters, the same input/output data semantics but
different functionality.

Figure 65 shows the verification process. It is based on comparing interfaces,
that are referenced by both types of requirement mappings. On the one hand,
interfaces are determined through the business function requirement mappings.
Business functions are identified that produce or consume business objects and
functional mappings are searched for them. The result is BF Mapping Interfaces.
On the other hand, PIM elements of the business object requirement mapping
are investigated. Each of them belongs to an interface, resulting in BO Mapping
Interfaces. The interfaces on each side are compared and if they don’t match,
the business object requirement mapping is discarded.

In case of pure data import or export business process the data mappings
cannot be functionally verified, because business objects are not necessarily
associated with business functions. The verification is also not applicable if
functional mappings are not available due to missing functional annotation or
non-solvable functional conflicts.

77

<<iterative>>

Discard business object
requirement mapping

Business object
requirement mapping

Business function
requirement mapping

Business function

Get mapping of
business function

Get interfaces
of PIM elements

Business object

Get business
object

Get
business
function

Get mapped
PIM elements

Get interfaces
of function

mapping

Compare
interfaces

PIM elements

BO Mapping
Interfaces

BF Mapping
Interfaces

Business object
requirement mappings

Business function
requirement mappingsExport and import direction is not

differentiated to minimize double activity
trees. The algorithm applies for both.

 [match]

 [else]

 [else]

 [business function
available]

 [no match]

 [mapping available]

Figure 65: Verification of requirement mappings

78

6.2 Conflict Analysis Results Representation

In this section we describe the Conflict Analysis Metamodel (CAMM), which
is used to represent detected requirements and created requirement mappings
during the conflict analysis process. Examples of its use are given in section 6.3.
The semantic conflict analysis algorithm generates requirements while analyz-
ing integration scenarios at the CIM level and interface descriptions at the PIM
level (see section 6.1.3, 6.1.4 and 6.1.7). Figure 66 shows the four possible types
of requirements related to the appropriate metaclasses of the CIMM and PIMM.
BusinessObjectRequirement references the BusinessObject metaclass of the
CIMM. Depending on the transfer direction the subclasses are either linked
to ImportInterface or ExportInterface. BusinessFunctionRequirement is
related to the CIMM’s BusinessFunction. The metaclass ImportElementRe-
quirement is used to mark an importing interface parameter or part of its
structure. The related-association refers to the AnnotatableElement meta-
class, which is base class for e. g., FunctionParameter, Field, ListElement.
The association is constrained to PIM elements, that are in an importing role
(e. g., a certain Field, that is part of a complex type, which is used as an
ImportParameter).

BusinessObjectImportRequirement BusinessObjectExportRequirement BusinessFunctionRequirement ImportElementRequirement

BusinessObjectRequirement

-description : String [0..1]

AnnotatableElement

+description : String

BusinessFunction

+name : String [0..1]

Requirement

+name : String

BusinessObjectImportInterface ExportInterface

(from CIMM) (from CIMM) (from PIMM)(from CIMM)(from CIMM)

Constraint:
Only elements in
an importing role
allowed.

related

+businessObject 1

+requirement0..1

related

+businessFunction 1

+requirement 1

related

+exportInterface 1

+requirement 1

related

+importElement 1

+requirement 1

related

+importInterface 1

+requirement 1

Figure 66: CAMM – Requirement metaclasses related to CIMM and PIMM

In an analogous manner to the requirements, the CAMM contains four re-
quirement mapping metaclasses, that are instantiated to create CIM-PIM and
PIM-PIM mappings: the abstract BusinessObjectRequirementMapping with
specializations BusinessObjectImportRequirementMapping and BusinessOb-
jectExportRequirementMapping, as well as BusinessFunctionRequirement-
Mapping and ImportElementRequirementMapping. The requirement mappings
will be defined in the following diagrams.

Figure 67 depicts the metaclass BusinessObjectRequirementMapping, that
is used to map business object requirements to either exporting or importing
interface elements at the PIM level. A mapping satisfies exactly one require-
ment, and a requirement can be satisfied by several mappings, in case the algo-
rithm finds multiple solutions for a requirement. All PIM elements that satisfy

79

a requirement are referenced with the target-association linked to the Anno-
tatableElement (e. g., parameters, fields). The association is constrained by
the mapping’s type. In case a BusinessObjectImportRequirementMapping is
used, only elements with an importing role may be referenced. The association
to the Interface of the PIMM holds the information to which interface the
discovered elements belong.

The ElementContext must be used if the target elements are parts of com-
plex data types, because it is possible to reuse types among several parameters
or fields. The interface-association, the ElementContext and the target-
association is a model representation of the dot notation (e. g., getMostValuable-
Customer.customer.firstname) introduced in the motivation scenario descrip-
tions in chapter 3. An instance of the context references the path between the
interface and the target elements as an alternating sequence of TypedElement
and Type instances at the PIM level. The sequence of the context must begin
with a typed element (e. g., a parameter) and must end with a complex type.

BusinessObjectRequirementMapping

-description : String [0..1]

AnnotatableElement

BusinessObjectRequirement

-name : String [1]

StructureElement

ElementContext

+name : String

BusinessObject

Type

TypedElement

-name : String

Interface

(from CIMM)

(from PIMM)

(from PIMM)

Constraint:
For export mappings
only exporting elements
of the PIM are allowed.
For import respectively.

target

+matchedElement1..*

+mapping 0..1

interface

+interface 1

+mapping0..*

satisfies

+requirement 1

+mapping 0..*

context

+elementContext 0..1

+borMapping1

path

{ordered}
+element 1..*

+elementContext 0..1

related

+businessObject 1

+requirement 0..1

Figure 67: CAMM – Business Object Requirement Mappings

The second type of mapping, the BusinessFunctionRequirementMapping,
is instantiated during the analysis of functional requirements defined at the CIM
level (see section 6.1.4). Figure 68 illustrates this metaclass and its relation to
the functional metaclasses of the CIMM and PIMM. The mapping establishes
the link between the business function requirements and implementations de-
scribed by Interfaces at the PIM level. A requirement can be satisfied by
several mappings, if multiple functional equivalent interfaces are found.

80

BusinessFunctionRequirementMapping

BusinessFunctionRequirement

+description : String

BusinessFunction

-name : String

Interface

(from PIMM)(from CIMM)

target

+interface 1..*

+mapping 0..1

related

+businessFunction 1

+requirement 1

satisfies

+requirement 1

+mapping 0..*

Figure 68: CAMM – Business Function Requirement Mapping

In Figure 69 the ImportElementRequirementMapping is shown. Require-
ments for import elements are generated during the analysis of interfaces at the
PIM level that have been identified by the analysis of business object require-
ments. The mapping links import element requirements to exporting interface
elements on PIM level. The definition of the metaclass is similar to the busi-
ness object requirement mapping, except for the related-association to the
ImportElementRequirement and the constraint that only exporting interface
elements can be referenced with the target-association. The element context
is used in the same way as for business object requirement mappings.

Finally the CAMM provides ConnectorMapping metaclasses (Figure 70) in
order to describe analysis results that require further processing by connector
functions. In section 6.1.10 we defined six rules for reasoning over the ontology
and CIM/PIM models to solve conflicts of interface mismatches. The results
of the rules are described with three types of connector mappings: Aggrega-
tionMapping (n:1 processing), TransformationMapping (n:m processing) and
SplitMapping (1:n processing). These types of mappings correspond to a sub-
set of connector functions at the CIM level (see section 1.1.1). Each of the
mappings references the ImportElementRequirementMapping via a consume-
and produce-association, whose cardinalities depend on the mapping type.

6.3 Conflict Analysis Results Example

After having described the metamodel for conflict analysis results, we have
selected three of the motivating scenarios to demonstrate the features of the
CAMM. The results of Scenario 1 show the simplest case of business object and
import element requirement mappings. With Scenario 2 we demonstrate how
the element context is applied. Scenario 3 describes a more complex analysis
result, in which a connector function is needed to aggregate interface elements
for a target system.

81

ImportElementRequirementMapping

-description : String [0..1]

AnnotatableElement

ImportElementRequirement

-name : String [1]

StructureElement

ElementContext

TypedElement

Type

-name : String

Interface

(from PIMM)

(from PIMM)

Constraint:
Only exporting
elements of the PIM
are allowed.

related

+importElement 1

+requirement 1

target

+element 1..*

+mapping 0..1

interface

+interface 1

+mapping 0..*

context

+elementContext 0..1

+iprMapping 1

satisfies

+requirement 1

+mapping 0..*

path

{ordered}
+element 1..*

+elementContext 0..1

Figure 69: CAMM – Import Element Requirement Mapping

ImportParameterRequirementMapping

AggregationMapping SplitMappingTransformationMapping

+name : String [0..1]

ConnectorMapping

produce

+target 1..*

0..1

consume

+source 1..*

0..1

consume

+source 1..*

0..1

target

+target 1..*

0..1

consume

+source 1

0..1

produce

+target 1

0..1

Figure 70: CAMM – Connector Mappings

6.3.1 Scenario 1 results: Simple requirement mappings

Motivating scenario 1 (section 3.1) described the transfer of a simple business
object Sum of sales at the CIM level. The underlying systems’ PIM interfaces
have one export parameter sum and one import parameter turnover, respec-
tively. Parts of the CIM are shown at top of Figure 71, PIMs are displayed
at bottom. In-between the conflict analysis model is shown. It contains three
requirements, that have been generated for the business object (export and
import), and for the import parameter. All requirements are satisfied with a
corresponding mapping, linking the CIM business object to the PIM export and
import parameter, and linking the ERP’s import parameter to the Webshop’s
export parameter.

82

 : BusinessObjectImportRequirementMapping : BusinessObjectExportRequirementMapping

 : ImportElementRequirementMapping

 : BusinessObjectImportRequirement : BusinessObjectExportRequirement

name = "saveSumOfSalesLastDay"

 : FunctionInterface

name = "Import turnover of last day"

 : ImportInterface

name = "Export turnover of last day"

 : ExportInterface

 : ImportElementRequirement

name = "sumOfSalesLastDay"

 : FunctionInterface

name = "Webshop"

 : IEModule

name = "Sum of sales"

 : BusinessObject

name = "turnover"

 : ImportParameter

name = "sum"

 : ExportParameter

 : Connection

name = "ERP"

 : IEModule

(CIM)

(PIM)

(CA Model)

TurnoverOfLastDay

TurnoverOfLastDay

 : interface : interface

 : interface

 : related : related

 : target : target
 : target

 : in

 : transports

 : out

 : satisfies : satisfies

 : offers : offers

 : hasParameter : hasParameter

 : satisfies

Figure 71: Conflict analysis results for scenario 1

6.3.2 Scenario 2 results: Interface element context

In section 3.3 a more complex scenario was defined, that requires the transfer of
structured data. In Figure 72 the business object structure is shown. Customer
ID will be exemplary selected to illustrate requirement mapping to a substruc-
ture part of interface descriptions. The export mapping references the func-
tion interface getCustomerListForLastDay with the interface-association. The
matching PIM element is the field id, referenced with the target-association.
Because the types customerType and cuListType can be used by any other pa-
rameter or field of the model, even as import, an element context is created,
that references the path between the interface and the target (the order of the
sequence cannot be seen in the figure due to limitations of the diagram type).
The mapping (interface, context, target) is equivalent to the expression getCus-
tomerListForLastDay.customers.cuListType.customer.customerType.id.

83

 : BusinessObjectExportRequirementMapping

name = "getCustomerListForLastDay"

 : FunctionInterface

 : BusinessObjectExportRequirement

name = "Turnover of last day"

 : BusinessObject

name = "List of Customers"

 : BusinessObject

name = "customerType"

 : ComplexType

name = "Customer ID"

 : BusinessObject

name = "customers"

 : ExportParameter

name = "cuListType"

 : Set

name = "Webshop"

 : IEModule

name = "customer"

 : ListElement

name = "Customer"

 : BusinessObject

name = "turnover"

 : Field

 : ElementContext

name = "name"

 : Field

name = "id"

 : Field

(CA Model)

(CIM)

(PIM)

ID

ID

 : interface

 : path

 : path

 : path

 : path

 : target

 : hasField

 : hasField

 : related

 : offers

 : context

 : satisfies

 : hasField

 : consistsOf : consistsOf

 : hasParameter

 : hasListElement

 : hasType

 : consistsOf

 : hasType

Figure 72: Conflict analysis results for scenario 2 (excerpt)

6.3.3 Scenario 3 results: Connector mapping

Scenario 3 contains a conflict in which the business object definition at the
CIM level cannot be directly met by the underlying systems (section 3.8). The
semantic conflict analysis is able to fulfill the import requirement for business
object Name by mapping to import parameter name of the ERP system (Fig-
ure 73). Through semantic reasoning (see rule 4 in section 6.1.10) the algorithm

84

resolves the conflict with the result, that Name can be composed by the fields
firstname and lastname of the Webshop’s complex type. The rule implies the
creation of an aggregating connector function to merge both fields for the import
parameter.

 : BusinessObjectImportRequirementMapping : BusinessObjectExportRequirementMapping

 : BusinessObjectImportRequirement

name = "getMostValuableCustomer"

 : FunctionInterface

 : BusinessObjectExportRequirement

name = "Import customer name
with the highest turnover"

 : ImportInterface

name = "Export customer name
with the highest turnover"

 : ExportInterface

 : ImportElementRequirement

name = "Name"

 : BusinessObject

name = "firstname"

 : Field

name = "Customer"

 : ComplexType

name = "Webshop"

 : IEModule

name = "lastname"

 : Field

name = "customer"

 : ExportParameter

name = "setName"

 : FunctionInterface

name = "name"

 : ImportParameter

name = "ERP"

 : IEModule

 : Connection

(PIM)

(CIM)

(CA Model)

CustomerName

Connector function
needed

 : related : related

 : target : target : target

 : offers

 : in

 : transports

 : out

 : satisfies : satisfies

 : hasType : offers

 : hasField

 : hasParameter

 : hasParameter : hasField

Figure 73: Conflict analysis results for scenario 3 – part 1

The information about the required connector function must be kept for
further connector model generation. Three steps are necessary to create the
adequate mappings: first, an interface description at the PIM level for the
connector function is generated, in case it is not yet available (e. g., as domain
function). Second, the usual import element requirement mappings that match
the connector function are created (Figure 74). Third, an AggregationMapping
is created, that references the mappings of firstname and lastname with the
consume-association and the mapping of name with the produce-association.

85

 : ImportElementRequirementMapping : ImportElementRequirementMapping : ImportElementRequirementMapping

 : ImportElementRequirement

 : ImportElementRequirement : ImportElementRequirement

name = "nameConcatenation"

 : FunctionInterface

name = "concatService"

 : IEModule

 : AggregationMapping

name = "firstname"

 : Field

name = "Customer"

 : ComplexType

name = "firstname"

 : ImportParameter

name = "lastname"

 : ImportParameter

name = "lastname"

 : Field

name = "name"

 : ImportParameter

name = "name"

 : ExportParameter

(CA Model)

(PIM)

Generated PIM
for Connector Function

 : target : target

 : consume

 : hasParameter : hasParameter

 : target

 : produce
 : satisfies

 : consume

 : satisfies : satisfies

 : hasField : hasField

 : hasParameter

 : offers

Figure 74: Conflict analysis results for scenario 3 – part 2

86

6.4 Semantic Conflict Analysis Implementation

Semantic conflict analysis is implemented as part of the Model-Based Integra-
tion Framework (MBIF). The conflict analysis algorithm is encapsulated in an
Eclipse plug-in which uses the Prolog engine for semantic reasoning and analy-
sis of components & integration requirements. The implementing approach is
sketched in Fig. 75

CIM PIM SM (Ontology)

Knowledge Base (PROLOG)

M2C Transformation (Ecore-to-PROLOG)

PROLOG Engine

Rule Base (PROLOG)

Conflict
Analysis

Tool

Figure 75: Semantic Conflict Analysis implementation

To enable the semantic conflict analysis, model artifacts are transformed to
Prolog and form the knowledge base for the semantic reasoning. Parts of the
semantic conflict analysis algorithm introduced in 6.1 as well as the structure of
CIMM, PIMM, and SMM are implemented in Prolog and constitute the corre-
sponding rule base. The constituent parts of the implementation are explained
in the following sections.

6.4.1 Prolog Engine

The SWI-Prolog environment is used as Prolog engine. The SWI-Prolog pro-
vides a library (JPL) which enables to embed Prolog in Java and Java appli-
cations in Prolog. In our approach, the JPL’s Java API is used by the conflict
analysis tool to access the SWI-Prolog engine.

6.4.2 Ecore-to-Prolog Transformation

The model artifacts required for the semantic conflict analysis and represented
as Ecore models (CIM, PIM, SMM) are parsed by the conflict analysis tool.
The model elements are identified by the unique identifiers generated by the
EMF framework when creating the model artifact. According to the artifact’s

87

metamodel for each model element (class, attribute or relation) the correspond-
ing Prolog fact (predicate) is generated. The predicate name comprises the
metamodel type and the name of the appropriate model element (including the
metamodel package name). Classes are represented as unary predicates contain-
ing the class name in the predicate name and the element identifier as predicate’s
parameter, e. g.,

pimm str Field(FieldId)

represents an instance of the metaclass Field in the PIMM package structure,
where FieldId is the given element identifier of the class instance. The relations
between the classes are represented by the binary predicates named according
to the name of the appropriate relation in the metamodel, e. g.,

pimm Offers(IEModulId, FunctionInterfaceId)

describes the relationship offers between instances of the PIMM classes IEModul
and FunctionInterface. The class attributes are represented as ternary pred-
icates in the form of

attribute(ElementID, AttrName, AttrValue)

where ElementId is the identifier of the corresponding parent element (class),
AttrName and AttrValue is the name and value of the given attribute.

6.4.3 Knowledge Base & Rule Base

The semantic conflict analysis implementation is based on the data provided
by the knowledge base and the rule base. The knowledge base contains the
Prolog representation of participating model artifacts: SM, CIM, PIM. The
partial implementation of the semantic conflict analysis algorithm as well as
rules describing generalization relationships in the appropriate metamodels are
contained in the rule base. An example of such generalization relationship is
the relationship between the classes FunctionInterface, DocumentInterface,
MethodInterface, and Interface:

pimm Interface(I) :- pimm FunctionInterface(I) |
pimm DocumentInterface(I) | pimm MethodInterface(I).

For each integration scenario the same rule base is used as long as the meta-
models (CIMM, SMM, PIMM etc.) remain unchanged. The knowledge base is
dependent on the integration scenario and models participating in it.

The following exemplary rule (simplified) implements a part of the conflict
analysis algorithm to determine the possibility of extraction of given business
object from the set of available interfaces. The business object annotated with
the semantic concept can be exported if at least one of the interfaces delivers
an output element annotated with the equivalent semantic concept.

88

exportableBO(BO):-smm_BO(BO),((smm_AnnotatedWith
(BO, SemanticConcept), isAvailableForExport
(SemanticConcept))|(isComplexBO(BO), forall
(cimm_PartOfBO(PartBO, CompoundBO),exportableBO(PartBO)))).

The rule makes use of isAvailableForExport and isComplexBO rules.

89

7 Summary

This document describes the semantic conflict analysis framework developed in
the course of the BIZYCLE Project. The framework is based on the Model-
Driven Architecture (MDA) in order to extend the limitations of the existing
semantic annotation and reasoning frameworks towards many unsupported plat-
forms. The goal was to build an universal MDA framework which can be easily
extended to support any kind of system data and/or interfaces under the single
semantic (ontology) and annotation metamodel.

In the Chapter 1, the BIZYCLE project was introduced and relevant meta-
models explained. Chapter 2 covered related work in the area of semantic an-
notation and reasoning. In chapter 3 several motivating scenarios were intro-
duces, with the goal to familiarize the reader with the classes of integration
problems that the semantic conflict analysis should be able to tackle. Chapter
4 briefly revisited the overall BIZYCLE philosophy for conflict analysis, and
sketched structure, behavior, property and communication analysis. The role of
the semantic conflict analysis was also positioned within the overall framework.
Chapter 5 introduced the application of the semantic annotations, defining the
level and element which can be annotated as well as annotation types. Finally,
in chapter 6 the actual semantic conflict analysis algorithm was described in
detail, including the exemplary test implementation in Prolog.

90

References

[1] ATL: Atlas Transformation Language User Manual. http://www.eclipse.
org/m2m/atl/doc/ATL User Manual[v0.7].pdf, 2006.

[2] Allegrograph, 2008. http://agraph.franz.com/allegrograph/.

[3] Bprolog, 2008. http://www.probp.com/.

[4] Flora-2: An object-oriented knowledge base language, 2008.
http://flora.sourceforge.net/.

[5] Hoolet, 2008. http://owl.man.ac.uk/hoolet/.

[6] Jena semantic web framework, 2008. http://jena.sourceforge.net/.

[7] Kaon2, 2008. http://kaon2.semanticweb.org/.

[8] Owl api, 2008. http://owlapi.sourceforge.net/.

[9] Swi-prolog, 2008. http://www.swi-prolog.org/.

[10] SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
2008. http://www.w3.org/Submission/SWRL/.

[11] Thea: An OWL library for (SWI) Prolog, 2008.
http://www.semanticweb.gr/TheaOWLLib/.

[12] Triple Reasoning and Rule Entailment Engine, 2008.
http://www.ontotext.com/trree/index.html.

[13] tuprolog, 2008. http://alice.unibo.it/xwiki/bin/view/Tuprolog/.

[14] Visual prolog, 2008. http://www.visual-prolog.com/.

[15] Web ontology language, 2008. http://www.w3.org/2004/OWL/.

[16] Xsb, 2008. http://xsb.sourceforge.net/.

[17] Yaprolog, 2008. http://www.dcc.fc.up.pt/ vsc/Yap/.

[18] Y. Arens, C.-N. Hsu, and C. A. Knoblock. Query processing in the SIMS
information mediator. In M. N. Huhns and M. P. Singh, editors, Readings
in Agents, pages 82–90. Morgan Kaufmann, San Francisco, CA, USA, 1997.

[19] F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69:2001, 2000.

[20] N. Boudjlida and H. Panetto. Annotation of enterprise models for interop-
erability purposes. In Proceedings of the IWAISE 2008, 2008.

91

[21] S. Chawathe, H. Garcia-molina, J. Hammer, K. Irel, Y. Papakonstantinou,
J. Ullman, and J. Widom. The tsimmis project: Integration of heteroge-
neous information sources. In Journal of Intelligent Information Systems,
pages 7–18, 1994.

[22] W. Chen, M. Kifer, and D. S. Warren. Hilog: A foundation for higher-order
logic programming. Journal of Logic Programming, 15:187–230, 1993.

[23] M. D. D. Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. AMW:
a generic model weaver. In Proceedings of IDM05, 2005.

[24] D. Fensel, S. Decker, M. Erdmann, and R. Studer. Ontobroker: The very
high idea. In FLAIRS ’98: 11th International Flairs Conference, Sanibal
Island, Florida, 1998.

[25] C. H. Goh. Representing and Reasoning about Semantic Conflicts in Het-
erogeneous Information Systems. PhD thesis, Massachusetts InstituteTech-
nology, 1997.

[26] V. Haarslev and R. Mller. Racer: A core inference engine for the semantic
web. In In 2nd International Workshop on Evaluation of Ontology-based
Tools (EON-2003), Sanibel Island, FL, pages 27–36, 2003.

[27] V. Haarslev, R. Mller, and M. Wessel. Querying the semantic web with
racer + nrql. 2004.

[28] P. Hoffmann. Design of a model-based message transformation language.
Diploma thesis, TU Berlin, 2008.

[29] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2003.

[30] M. Jang and J.-C. Sohn. Bossam: An extended rule engine for owl infer-
encing. In RuleML 2004, volume 3323 of LNCS, pages 128–138. Springer
Berlin / Heidelberg, 2004.

[31] F. v. H. Jeen Broekstra, Arjohn Kampman. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In The Semantic Web ISWC
2002, volume 2342 of LNCS, pages 54–68. Springer Berlin / Heidelberg,
2002.

[32] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented
and frame-based languages. Journal of the ACM, 42:741–843, 1995.

[33] A. Kiryakov, D. Ognyanov, and D. Manov. Owlim a pragmatic semantic
repository for owl. In WISE 2005 Workshops, volume 3807 of LNCS, pages
182–192. Springer Berlin / Heidelberg, 2005.

[34] A. Kiryakov, B. Popov, D. Ognyanoff, D. Manov, A. Kirilov, and M. Gora-
nov. Semantic annotation, indexing, and retrieval. In International Se-
mantic Web Conference, 2003.

92

[35] D. Kumpe, G. Bauhoff, H. Agt, N. Milanovic, and R. Kutsche. Bizycle
metamodelds: Foundation for model-based software and data integration.
Technical report, TU Berlin, 2008.

[36] R. Kutsche and N. Milanovic. (Meta-)Models, Tools and Infrastructures
for Business Application Integration. In UNISCON 2008. Springer Verlag,
2008.

[37] R. Kutsche, N. Milanovic, G. Bauhoff, T. Baum, M. Cartsburg, D. Kumpe,
and J. Widiker. BIZYCLE: Model-based Interoperability Platform for Soft-
ware and Data Integration. In Proceedings of the MDTPI at ECMDA, 2008.

[38] A. Leicher. Analysis of Compositional Conflicts in Component-Based Sys-
tems. PhD thesis, TU Berlin, Computergesttzte InformationsSysteme
(CIS), 2005.

[39] C. Li and T. W. Ling. Owl-based semantic conflicts detection and resolu-
tion for data interoperability. In Conceptual Modeling for Advanced Appli-
cation Domains, volume 3289 of LNCS, pages 266–277. Springer Berlin /
Heidelberg, 2004.

[40] C. Mateos, M. Crasso, A. Zunino, and M. Campo. Supporting ontology-
based semantic matching of web services in movilog. In Advances in Arti-
ficial Intelligence - IBERAMIA-SBIA 2006, volume 4140 of LNCS, pages
390–399. Springer Berlin / Heidelberg, 2006.

[41] N. Milanovic, R. Kutsche, T. Baum, M. Cartsburg, H. Elmasgunes,
M. Pohl, and J. Widiker. Model & Metamodel, Metadata and Docu-
ment Repository for Software and Data Integration. In Proceedings of the
ACM/IEEE MODELS, 2008.

[42] C. F. Naiman and A. M. Ouksel. A classification of semantic conflicts
in heterogeneous database systems. In WITS ’92: Selected papers of the
workshop on Information technologies and systems, pages 167–193, Nor-
wood, NJ, USA, 1995. Ablex Publishing Corp.

[43] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. Meteor-s web service
annotation framework. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 553–562, New York, NY, USA, 2004.
ACM.

[44] E. Pulier and H. Taylor. Understanding Enterprise SOA. Manning, 2006.

[45] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical owl-dl reasoner. Web Semant., 5(2):51–53, 2007.

[46] D. Tsarkov and I. Horrocks. Fact++ description logic reasoner: System
description. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
4130 LNAI:292–297, 2006.

93

[47] D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks. Using vampire
to reason with owl. In The Semantic Web ISWC 2004, volume 3298 of
LNCS, pages 471–485. Springer Berlin / Heidelberg, 2004.

[48] M. Uschold and M. Grninger. Ontologies: Principles, methods and appli-
cations. In Knowledge Engineering Review, pages 93–155, 1996.

[49] H. Wache, T. Vgele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neu-
mann, and S. Hbner. Ontology-based integration of information - a survey
of existing approaches. pages 108–117, 2001.

[50] Y. Zou, T. Finin, and H. Chen. F-owl: an inference engine for the semantic
web. In The Semantic Web ISWC 2002, volume 3228 of LNCS, pages
238–248. Springer Berlin / Heidelberg, 2004.

94

	RoteReihe.pdf
	vorlage.pdf

