
Supporting Domain Modeling with Automated Knowledge

Acquisition and Modeling Recommendations

vorgelegt von
Diplom-Informatiker (FH)

Henning Agt-Rickauer, geb. Agt

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Volker Markl
Gutachter: Prof. Dr. Harald Sack
Gutachter: Prof. Dr. Kurt Sandkuhl

Tag der wissenschaftlichen Aussprache: 4. November 2019

Berlin 2020

Abstract

Domain modeling is an important model-driven engineering activity, which is typically used in the
early stages of software projects. Domain models capture concepts and relationships of respective
application fields using a modeling language and domain-specific terms. They are a key factor in
achieving shared understanding of the problem area among stakeholders, improving communica-
tion in software development, and generating code and software. Domain models are a prerequisite
for domain-specific language development and are often implemented in software and data inte-
gration and software modernization projects, which constitute the larger part of industrial IT
investment. Several studies from recent years have shown that model-driven methods are much
more widespread in the industry than previously thought, yet their application is challenging.

Creating domain models requires that software engineers have both experience in model-driven
engineering and detailed domain knowledge. While the former is one of the general modeling skills,
the required domain knowledge varies from project to project. Domain knowledge acquisition is
a time-consuming manual process because it requires multidisciplinary collaboration and gather-
ing of information from different groups of people, documents, and other sources of knowledge,
and is rarely supported in current modeling environments. Consistent access to large amounts of
structured domain knowledge is not possible due to the heterogeneity of formats, access methods,
schemas, and semantic representations. Besides, existing suitable knowledge bases were mostly
manually created and are therefore not extensive enough. The automated construction of knowl-
edge resources utilizes mainly information extraction approaches that focus on factual knowledge
at the instance level and therefore cannot be used for conceptual-level domain modeling.

This thesis develops novel methods and tools that provide domain information directly during
modeling to reduce the initial effort of using domain modeling and to help software developers cre-
ate domain models. It works on the connection of the areas of software modeling, knowledge bases,
information extraction and recommender systems to automatically acquire conceptual knowledge
from structured knowledge sources and unstructured natural language datasets, to transform the
aggregated knowledge into appropriate recommendations, and to develop suitable assistance ser-
vices for modeling environments.

With this thesis, the paradigm of Semantic Modeling Support is proposed, the methodologi-
cal foundation for providing automated modeling assistance. It includes an iterative procedure
of model refinement, knowledge acquisition, and element recommendation that allows to query
and provide the necessary domain knowledge for a range of support scenarios at each stage of
domain model development, keeping the human in the loop. To address the lack of conceptual
knowledge resources, new methods are developed to extract conceptual terms and relationships
directly from large N-gram text data using syntactic patterns, co-occurrences, and statistical fea-
tures of text corpora. A large Semantic Network of Related Terms is automatically constructed
with nearly 6 million unique one-word terms and multi-word expressions connected with over 355
million weighted binary and ternary relationships. It allows to directly answer top-N queries. This
thesis introduces an extensible query component with a set of fully connected knowledge bases to
uniformly access structured knowledge with well-defined relationships. The developed Mediator-
Based Querying Architecture with Generic Templates is responsible for retrieving lexical informa-
tion from heterogeneous knowledge bases and mapping to modeling language-specific concepts.
Furthermore, it is demonstrated how to implement the semantic modeling support strategies by
extending the widely used Eclipse Modeling Project. The Domain Modeling Recommender Sys-
tem generates context-sensitive modeling suggestions based on the connected knowledge bases,
the semantic network of terms, and an integrated ranking strategy. Finally, this thesis reports
on practical experience with the application of the developed methods and tools in three research
projects.

Zusammenfassung

Domänenmodellierung ist eine wichtige Methode der modellgetriebenen Softwareentwicklung, die
oftmals in den frühen Phasen von Softwareprojekten verwendet wird. Domänenmodelle erfassen
Konzepte und Beziehungen des jeweiligen Anwendungsgebietes unter Verwendung einer Modellie-
rungssprache und domänenspezifischer Begriffe. Sie sind ein Schlüsselfaktor für ein gemeinsames
Verständnis des Problembereichs unter den Projektbeteiligten, für die Verbesserung der Kom-
munikation während der Softwareentwicklung und für die Generierung von Code und Software.
Domänenmodelle sind eine Voraussetzung für die Entwicklung von domänenspezifischen Sprachen
und werden häufig bei Softwaremodernisierung sowie bei Software- und Datenintegrationsprojek-
ten eingesetzt, die den größten Teil der industriellen IT-Investitionen ausmachen. Mehrere Studien
aus den letzten Jahren haben gezeigt, dass modellgetriebene Methoden in der Branche verbreiteter
sind, als bisher angenommen, ihre Anwendung jedoch eine Herausforderung darstellt.

Das Erstellen von Domänenmodellen setzt voraus, dass Softwareentwickler sowohl über Erfah-
rung in der modellgetriebenen Softwareentwicklung als auch über detaillierte Domänenkenntnisse
verfügen. Ersteres gehört zu allgemeinen Modellierungskompetenzen, jedoch variiert das erforder-
liche Domänenwissen von Projekt zu Projekt. Der Erwerb von Domänenwissen ist ein zeitauf-
wendiger manueller Prozess, da er interdisziplinäre Zusammenarbeit und Informationsbeschaffung
von verschiedenen Personengruppen, Dokumenten und anderen Wissensquellen erfordert und in
aktuellen Modellierungsumgebungen kaum unterstützt wird. Ein einheitlicher Zugriff auf große
Mengen von strukturiertem Domänenwissen ist aufgrund der Heterogenität von Formaten, Zu-
griffsmethoden, Schemata und semantischen Repräsentationen nicht möglich. Außerdem wurden
vorhandene geeignete Wissensbasen meist manuell erstellt und sind daher nicht umfangreich ge-
nug. Bei der automatisierten Erstellung von Wissensressourcen werden hauptsächlich Ansätze der
Informationsextraktion verwendet, die Faktenwissen auf Instanzebene erschließen und daher nicht
für Domänenmodellierung auf Konzeptebene geeignet sind.

In dieser Arbeit werden neuartige Methoden und Tools entwickelt, die Domäneninformationen
direkt während der Modellierung bereitstellen, um den anfänglichen Aufwand der Domänenmo-
dellierung zu verringern und Softwareentwicklern bei der Erstellung von Domänenmodellen zu
helfen. Sie befasst sich mit der Verknüpfung der Bereiche Softwaremodellierung, Wissensdaten-
banken, Informationsextraktion und Empfehlungssysteme, um automatisch konzeptionelles Wissen
aus strukturierten Datenquellen und unstrukturierten natürlichsprachlichen Texten zu erschließen,
um das aggregierte Wissen in geeignete Empfehlungen zu transformieren, und um geignete Un-
terstützungsdienste für Modellierungswerkzeuge zu entwickeln.

Diese Dissertation führt die Semantische Modellierungsunterstützung, die methodische Grund-
lage für eine automatisierte Modellierungshilfe, ein. Sie umfasst ein iteratives Verfahren der Modell-
verfeinerung, Wissensbeschaffung und Elementempfehlung, welches das erforderliche Domänen-
wissen für eine Reihe von Unterstützungsszenarien in jeder Phase der Domänenmodellentwicklung
abfragt und bereitstellt. Das Fehlen von konzeptionellen Wissensressourcen wird durch die Ent-
wicklung neuer Methoden adressiert, die konzeptionelle Begriffe und Beziehungen direkt aus großen
N-Gram Textdaten mit Hilfe von syntaktischen Mustern, Kookkurrenzen und statistischen Merk-
malen großer Textkorpora extrahieren. Es wird ein großes Semantisches Netz verwandter Begriffe
mit fast 6 Millionen Ein- und Mehrwortbegriffen automatisch konstruiert, die mit über 355 Mil-
lionen gewichteten binären und ternären Beziehungen verbunden sind, wodurch Top-N-Anfragen
direkt beantwortet werden können. Die Dissertation führt eine erweiterbare Abfragekomponente
mit einer Reihe fertig verbundener Wissensbasen ein, um einheitlich auf strukturiertes Wissen mit
spezifischen Relationen zuzugreifen. Die entwickelte Mediator-basierte Abfragearchitektur mit ge-
nerischen Templates fragt automatisch lexikalische Informationen aus heterogenen Wissensbasen
ab und ordnet sie Modellierungssprachkonzepten zu. Außerdem wird gezeigt, wie die Strategien
der semantischen Modellierungsunterstützung implementiert werden, indem das weit verbreitete
Eclipse Modeling Project erweitert wird. Das Domänenmodellierungsempfehlungssystem generiert
kontextsensitive Modellierungsvorschläge, basierend auf den verbundenen Wissensbasen, dem se-
mantischen Begriffsnetz und einer integrierten Ranking-Strategie. Schließlich berichtet diese Arbeit
über praktische Erfahrungen bei der Anwendung der entwickelten Methoden und Werkzeuge in
drei Forschungsprojekten.

Declaration of Authorship

I, Henning Agt-Rickauer, declare that this dissertation titled ”Supporting Domain Modeling with
Automated Knowledge Acquisition and Modeling Recommendations” and the work presented in
it are my own. I confirm that all sources and tools used are listed and duly cited.

Berlin, February 04, 2020 .

Acknowledgements

I would like to express my gratitude to the people who made this dissertation possible.

First and foremost, I am particularly grateful to Dr. Ralf-Detlef Kutsche for bringing me to the TU
Berlin, giving me the opportunity to carry out my research within two exciting research projects,
and encouraging me to conduct this dissertation. This work would not have been possible without
his persistent support and fruitful discussions during my long journey. I would like to thank Prof.
Volker Markl for the great research environment he created at the DIMA group. His dedication
to scalable data analytics has inspired me to focus on linking modeling and information extraction.

I would like to express my deep gratitude to Prof. Harald Sack for providing me with the oppor-
tunity to continue my work at the Hasso-Plattner-Institute. His valuable advice greatly improved
the quality of my research, and the project in, which I participated, brought fresh ideas to my
work. I have been fortunate to work with my colleagues Jörg Waitelonis, Tabea Tietz, Christian
Hentschel and Magnus Knuth, who have so warmly integrated me into the team at HPI. Especially,
I thank Jörg for his valuable comments during the last phase of my thesis.

I would like to thank Prof. Kurt Sandkuhl for acting as third reviewer for this dissertation.

Last but not least, I thank my beloved wife Kathy from the bottom of my heart for her patience
and encouragement. She experienced the ups and downs of my work directly and was always there
for me and gave me the freedom and time required to conduct my work. It was also a challenge
for her because she often took the load off from me when she was taking care of our three children,
who were born during the course of my dissertation.

To Kathy, Maila, Lenja, and Janik

Contents

1 Introduction 11
1.1 Motivation . 12

1.1.1 Industrial Relevance of Model-Driven Engineering 12
1.1.2 Importance of Domain Modeling in Software Projects 12
1.1.3 Use Cases of Domain Modeling . 13
1.1.4 Recommender Systems for Modeling . 14

1.2 Challenges of Domain Modeling . 15
1.2.1 Cost of Domain Knowledge Acquisition . 16
1.2.2 Heterogeneity of Knowledge Bases . 18
1.2.3 Lack of Conceptual Knowledge Resources 19

1.3 Objectives, Contributions and Outline . 20

2 Foundations 23
2.1 Introduction . 23
2.2 Foundations of Software Modeling . 23

2.2.1 Models . 24
2.2.2 (Meta-)Metamodels . 25
2.2.3 Modeling Languages . 27
2.2.4 Domain Modeling . 29
2.2.5 Domain-Specific Languages . 30
2.2.6 Model-Driven Methods . 32

2.3 Foundations of Knowledge Bases . 33
2.3.1 Knowledge Representation . 34
2.3.2 Representation Languages . 34
2.3.3 Knowledge Management . 39
2.3.4 Linked Data . 41

2.4 Foundations of Information Extraction . 43
2.4.1 Basic Computational Linguistics Methods 43
2.4.2 Term Extraction . 45
2.4.3 Fact Extraction . 46
2.4.4 Distributional Semantics . 50

2.5 Foundations of Recommender Systems . 51
2.5.1 Types of Recommender Systems . 52
2.5.2 Semantics-Aware Recommender Systems . 53
2.5.3 Recommendation Systems in Software Engineering 53

2.6 Summary . 54

3 Semantic Modeling Support 55
3.1 Introduction . 55
3.2 Related Modeling Methods . 55
3.3 General Support Procedure . 56
3.4 Domain Modeling Support Scenarios . 57

1

3.4.1 Domain Modeling Languages . 57
3.4.2 Providing Contextual Information . 59
3.4.3 Providing Suggestions for Element Names 60

3.5 Mappings of Domain Model Relationships . 64
3.6 Retrieval of Lexical Information . 65
3.7 Knowledge Acquisition from Text Datasets . 68
3.8 Knowledge Acquisition from Knowledge Bases . 70
3.9 Summary . 73

4 SemNet: Extraction of Semantically Related Terms 75
4.1 Introduction . 75
4.2 Related Extraction Methods . 75

4.2.1 Keyword and Relationship Extraction . 76
4.2.2 Word Embeddings . 76

4.3 Extraction Process . 78
4.3.1 Overview . 78
4.3.2 Google Books N-Gram Dataset . 79
4.3.3 Dataset Conversion . 80
4.3.4 Dataset Reduction . 84
4.3.5 Part-Of-Speech Tagging . 85
4.3.6 Normalization . 85
4.3.7 Syntactic Patterns . 87
4.3.8 Co-occurrence Analysis . 90
4.3.9 Relatedness Computation . 92
4.3.10 Context Extension . 94
4.3.11 SemNet Construction . 97

4.4 Extraction Results . 98
4.4.1 Conversion Results . 98
4.4.2 Normalization Results . 99
4.4.3 Pattern Match Results . 99
4.4.4 Co-occurrence Results . 100
4.4.5 Aggregation Results . 101
4.4.6 Context Extension and Integration Results 103

4.5 Evaluation . 104
4.5.1 Datasets . 104
4.5.2 Quantitative Evaluation Procedure. 105
4.5.3 Quantitative Evaluation Results . 105

4.6 Working with SemNet . 108
4.6.1 Data Serializations . 108
4.6.2 Application Programming Interfaces . 108
4.6.3 Web Interface . 109
4.6.4 Top-N Examples . 110

4.7 Summary . 112

5 OntoConnector: Integration of Lexical Knowledge Bases 115
5.1 Introduction . 115
5.2 Related Knowledge Integration Methods . 115

5.2.1 Ontology Matching . 116
5.2.2 Knowledge Translation . 116
5.2.3 Data Centralization . 116
5.2.4 Query Federation . 117

5.3 General Querying Procedure . 117
5.4 Sources of Modeling Knowledge . 117

5.4.1 Lemon-Based Lexicons: WordNet . 118

2

5.4.2 OWL Schemata: OpenCyc . 119
5.4.3 Proprietary Models: ConceptNet . 120

5.5 Mediator-Based Approach . 121
5.6 Knowledge Base Specific Queries . 123

5.6.1 Query Procedure . 123
5.6.2 WordNet Specific Queries . 124
5.6.3 OpenCyc Specific Queries . 127
5.6.4 ConceptNet Specific Queries . 131

5.7 Query Result Integration . 134
5.8 Templates for Knowledge Base Integration . 134

5.8.1 Lemon-Based Lexical Resources . 134
5.8.2 OWL Ontology Schemata . 135
5.8.3 SKOS Vocabularies . 135
5.8.4 JSON-LD APIs . 136

5.9 Summary . 136

6 DoMoRe: Implementation of the Recommender System 137
6.1 Introduction . 137
6.2 Related Recommender Systems . 137

6.2.1 Modeling Assistance Approaches . 138
6.2.2 HERMES Recommender Project . 138
6.2.3 EXTREMO Assistant . 139

6.3 Eclipse Modeling Environment . 139
6.4 Architecture . 140
6.5 Recommendation Generation . 142

6.5.1 Class Name Recommendation . 142
6.5.2 Association Name Recommendation . 144

6.6 Ranking Implementation . 145
6.7 Eclipse Plug-ins . 145

6.7.1 Model Advisor Plug-in . 145
6.7.2 Semantic Autocompletion Plug-in . 146

6.8 Summary . 148

7 Practical Applications of Semantic Modeling Support 149
7.1 Introduction . 149
7.2 BIZWARE Research Project . 149
7.3 dwerft Research Project . 151
7.4 AdA Research Project . 153

8 Conclusions and Outlook 155
8.1 Key Research Results . 155
8.2 Future Work . 159

3

List of Figures

1.1 Examples of different mind-sets and roles participating in an MDE software project 17

2.1 Main research areas related to this thesis . 23
2.2 Four-layer metamodeling architecture . 26
2.3 Language definition stack after Kühne . 27
2.4 Example of a UML class diagram . 29
2.5 The concepts and components of domain-specific languages 31
2.6 The principle of model transformation in MDA . 33
2.7 The Semantic Web stack from Wikipedia Commons 35
2.8 Examples of RDF statements in triple syntax and the corresponding RDF graph . 36
2.9 Examples of class and property definitions using RDF Schema 37
2.10 Examples of typical ontology definition statements with OWL 38
2.11 Examples of an RDF dataset, a SPARQL query, the corresponding triple pattern... 40
2.12 Linked Open Data Cloud diagram as of March 2019, by John P. McCrae 42
2.13 Example text from Wikipedia’s page on Microsoft and its segmented and tokenized... 44
2.14 Comparison of Stanford/Penn Treebank and Google part-of-speech tags... 44
2.15 Dependency structure for a sample sentence obtained from the Google Cloud... . . 45
2.16 Named Entity Recognition and Coreference Resolution applied to an example text... 47
2.17 Example text enriched with semantic role labels using the SRL demo of the... . . . 47
2.18 Bootstrapping principle for semi-supervised relation extraction 49
2.19 Example of a word-context matrix . 50

3.1 Iterative approach of supported modeling . 56
3.2 Simple domain model example in the healthcare domain 58
3.3 Scenario 1 – Contextual information for a selected class 59
3.4 Scenario 2 – Contextual information for a selected association 60
3.5 Scenario 3 – Suggestions for related class names when adding a disconnected class 61
3.6 Scenario 4 – Suggestions of subclass names when adding a specialization 61
3.7 Scenario 5 – Suggestions of superclass names when adding a generalization 62
3.8 Scenario 6 – Suggestions of aggregated class names when adding an aggregated class 62
3.9 Scenario 7 – Suggestions of container class names when adding a container class . . 63
3.10 Scenario 8 – Suggestions of associated class names when adding an associated class 63
3.11 Scenario 9 – Suggestions of association names for a newly created association link . 64
3.12 General procedure of information extraction . 68
3.13 Examples of redundancy and paraphrasing in text documents... 69
3.14 Text extraction approach of the thesis . 70
3.15 General concept of knowledge base creation and access 71
3.16 Knowledge base data model heterogeneity: Representation of the concept ”dentist” 72
3.17 Knowledge base extraction approach of the thesis 73

4.1 Procedure of creating a semantic term network based on natural language analysis 79
4.2 Process of the unigram data aggregation and database table creation... 82
4.3 Process of the fivegram data aggregation and database table creation 83

4

4.4 Part-of-speech tagging of the fivegrams, replacing the general Google tags... 86
4.5 Examples of the applied normalization rules on the fivegrams 86
4.6 Hierarchical POS pattern matching to determine positions and relations of terms... 91
4.7 Aggregation of duplicate extracted co-occurrences and occurrences 93
4.8 Process of the six-gram generation . 95
4.9 Excerpt of the SemNet graph for the term ”hospital” 97
4.10 Examples of how terminology information for pregnancy is represented in... 105
4.11 Screenshot of SemNet’s web interface . 109

5.1 Automated procedure of querying semantic knowledge bases 118
5.2 The core lemon model and relationships to the WordNet model 119
5.3 Excerpt of WordNet: Relationships between the word doctor and dentist 119
5.4 OpenCyc’s data model based on OWL . 119
5.5 Excerpt of OpenCyc: Relations between the concept doctor and dentist 120
5.6 ConceptNet’s data model and an excerpt of the graph for the concept doctor . . . 121
5.7 Three layer mediator-wrapper architecture . 122
5.8 General approach of translating knowledge base independent queries... 123
5.9 Lexical entries in WordNet RDF . 124
5.10 Multiple senses of lexical entries and their references to WordNet RDF synsets . . 125
5.11 Synset members and hyponym relations in WordNet RDF 126
5.12 Canonical forms and their written representations of multiple synset members . . . 126
5.13 Labels and aliases in OpenCyc . 128
5.14 Taxonomic relations and references to second order collections in OpenCyc 129
5.15 Taxonomic relationships in ConceptNet . 131

6.1 Ecore Diagram Editor . 140
6.2 Eclipse Platform Architecture . 141
6.3 Architecture of the DoMoRe recommender system 141
6.4 Lexical preparation in the procedure of the recommendation generation 142
6.5 Retrieval in the procedure of the recommendation generation 143
6.6 Integration and ranking in the procedure of the recommendation generation 143
6.7 Lexical preparation for verb term recommendations 144
6.8 Retrieval and ranking for verb term recommendations 144
6.9 Model Advisor of the recommender system . 146
6.10 Semantic Autocompletion of the recommender system 147

7.1 Overview of the BIZWARE model and software factory and implemented DSLs . . 150
7.2 Visualization of the dwerft project ontology for film production tool integration . . 152
7.3 Visualization of parts of the AdA vocabulary for fine-grained semantic video... . . 154

5

6

List of Tables

3.1 Corresponding semantic relationship types of different modeling paradigms 65
3.2 Summary of the technology-independent term queries 68

4.1 Comparison of Recent Word Embedding Approaches to SemNet 78
4.2 Structure of the Google Books N-gram dataset files. Examples of fivegrams... . . . 81
4.3 Universal language independent part-of-speech tagset used by the Google Ngram... 82
4.4 Result of the fivegram query, showing the ten most frequent fivegrams that... . . . 84
4.5 Excerpt of the Penn Treebank Tagset used by the Stanford Part-Of-Speech Tagger 85
4.6 Results of the automated syntactic analysis of terms in lexical and semantic databases 88
4.7 Implemented part-of-speech pattern to identify noun key terminology and... 90
4.8 Overview of the analysis sections and their corresponding result sections 98
4.9 Summary of the N-gram dataset conversion process 98
4.10 Summary of the fivegram normalization results . 99
4.11 Number of noun and verb pattern matches . 100
4.12 Statistics on the distribution of the binary relationships 101
4.13 Statistics on the distribution of the ternary relationships 101
4.14 Number of extracted terms and relationships before and after duplicate aggregation 101
4.15 Noun POS pattern ranked by number of distinct extracted terms 102
4.16 Number of N-grams processed for context extension 103
4.17 Number of distinct terms and relationships contained in SemNet 103
4.18 Term coverage results for WordNet and ConceptNet 106
4.19 Relationship coverage results for WordNet . 106
4.20 Relationship coverage results for ConceptNet . 107
4.21 Top 10 related noun terms for the respective noun query terms 110
4.22 Top 10 related verb terms for the respective noun query terms 110
4.23 Top 10 related noun terms for the respective verb query terms 111
4.24 Top 10 related triples of noun terms for the respective noun query terms 111
4.25 Top 10 related triples with subject-predicate-object terms for the respective... . . . 112

5.1 Mapping of knowledge base independent queries to WordNet-specific relationships 127
5.2 Mapping of knowledge base independent queries to OpenCyc-specific relationships 130
5.3 Mapping of knowledge base independent queries to ConceptNet-specific relationships133

8.1 Summary of the contributions of this thesis . 157

7

8

Listings

2.1 Corresponding RDF/XML representation of the OWL example 37
3.1 Example of the broader nouns query using a distance of two 66
3.2 Example of the narrower nouns query using a distance of two 66
3.3 Example of the part nouns query using a distance of two 66
3.4 Example of the whole nouns query using a distance of one 66
3.5 Examples of the related nouns query using a single noun term and a... 67
3.6 Examples of the related verbs query using a single noun term and two noun terms 67
4.1 Create table statements for the unigram database table 82
4.2 Create table commands for the tagset database table and the fivegram database table 83
4.3 Example query of the fivegram database to find fivegrams of specific words... . . . 84
4.4 Create table commands for the extracted relationships tables 92
5.1 WordNet SPARQL query that retrieves nouns for the keyword ”doctor” 124
5.2 WordNet SPARQL query that retrieves the first synset for the keyword ”doctor” . 125
5.3 WordNet SPARQL query that retrieves all hyponyms of the doctor/physician synset126
5.4 WordNet SPARQL query that retrieves the complete set of terms for all hyponyms...127
5.5 OpenCyc query that retrieves concepts from OpenCyc that have the label ”doctor” 128
5.6 OpenCyc query that retrieves sub-concepts of concepts from OpenCyc 129
5.7 OpenCyc query that retrieves related concepts of the Doctor Medical concept . . . 129
5.8 OpenCyc query that retrieves all terms of a concept 130
5.9 Query extension to filter OpenCyc functions . 130
5.10 ConceptNet web API lookup to retrieve all edges for the concept /c/en/doctor . . 131
5.11 ConceptNet web API query to determine all IsA edges 132
5.12 ConceptNet web API query to determine related concepts of /c/en/doctor 133
5.13 Lemon-based template for a SPARQL query to retrieve related terms 134
5.14 OWL-based template for a SPARQL query to retrieve related terms 135
5.15 SKOS-based template for a SPARQL query to retrieve related terms 135
5.16 JSON-LD-based template for a SPARQL-LD query to retrieve related terms 136

9

10

Chapter 1

Introduction

Automation is the technique of running a procedure with minimal human intervention. Usually,
computers or similar technical devices replace human labor. Computers must be programmed by
humans to perform the required tasks. Very early, computers were instructed with machine code
that was entered directly through switches or read from punched cards. Later, low-level assembler
programming languages were developed that provided commands and functions closely coupled
with the computer’s instruction set architecture. They were more readable to humans, but offered
little abstraction, since one line code more or less corresponded to one machine instruction.

This changed in the late 1950s with the development of high-level programming languages,
which are more machine-independent, easier to write and maintain, as they provide functions for
common tasks, use natural language elements, and program code is translated into machine code
using compilers or interpreters. The higher degree of abstraction makes programs more under-
standable and allows developers to focus on functionality. However, the discrepancy between the
development of programming languages, computer hardware, operating systems and the result-
ing complexity in the 1960s led to the so-called ”software crisis” [1], in which a large part of
software projects ran over-budget and over-time, did not meet the requirements and were of low
quality. At that time, the term software engineering was coined [2], which resulted mainly from
a NATO conference initiative to develop new software methods and tools that were to handle the
complexity.

Since then, software development has evolved into a mature engineering discipline, in which
many useful principles, methods, languages, and tools (e.g., separation of concerns, V-Model,
object-oriented programming languages, integrated development environments – just to name a few
important ones) were created. Nevertheless, the capabilities of computers and user requirements
have grown steadily, leaving the complexity inherent. At the level of programming languages, only
a certain degree of abstraction can be achieved [3]. This has led to the use of models in software
development that have always been a means of abstraction. Respective modeling methods emerged
in the late 1990s and early 2000s mainly from Computer Aided Software Engineering (CASE) and
Object-Oriented Analysis and Design (OOAD). The main advantage of modeling is that the user
of the software, i.e. the domain expert, can be better integrated into the development of the
software. This reduces the risk that requirements will not be properly implemented because, on
the one hand the user cannot express them accurately, or they may be misinterpreted by the
developer. In addition, these methods include the (semi-)automatic translation of models into
program code, whereby a higher level of automation in software engineering is achieved.

As this dissertation was conducted within the context of research projects carried out in close
collaboration with industry partners, this chapter first elaborates how important modeling in in-
dustrial software development has become, and how important domain modeling is: a method to
capture concepts and relationships of a particular application field in domain models. Afterwards,
the challenges of applying domain modeling will be discussed, especially with regard to the re-
quired knowledge acquisition. Finally, the contributions of this dissertation are presented: novel
methods and tools to support domain modeling by developing, combining and improving methods
of software modeling, knowledge bases, information extraction and recommendation systems.

11

1.1 Motivation

1.1.1 Industrial Relevance of Model-Driven Engineering

One of the approaches to handle complexity of software and software development processes is the
use of model-driven engineering (MDE). The main goal of MDE is to raise the level abstraction
by using models as primary development artifacts and to increase the degree of automation by
reducing the amount of recurring development tasks [4, 5]. MDE is a solution to bridge the
”gap between the high-level concepts used by domain experts to express their specific needs and the
low-level abstractions provided by general-purpose programming languages” [6].

Model-driven solutions and adoptions have been developed by research and industry coop-
eration for almost 20 years. The most prominent example is the Unified Modeling Language
(UML) [7], which was accepted as standard in 1997 by the Object Management Group (OMG)
and is still being developed further. UML is considered the de facto standard language for soft-
ware specification and design [8]. While UML is designed as a general purpose modeling language,
the development of domain-specific solutions has a similar history [9]. Nowadays, domain-specific
language (DSL) development has reached a maturity level comparable to general purpose solutions
and is often used complementarily [10].

During the last two decades, model-driven engineering has not reached that much success
compared to the adoption of object-oriented programming languages. The main reasons for the
insufficient acceptance of MDE are tool usability and adoption, inconsistencies between software
artifacts and models, as well as missing synchronization, and the difficulty of teaching real world
design principles in education [11, 12]. Nevertheless, over the years, a number of reports have been
published on the successful adoption of model-driven engineering in industry [13, 14, 15, 16, 17].
Apart from these success stories, very few studies were conducted in the past on how MDE is
widely used in industry [18].

Missing empirical evidence of MDE in practice has been approached by several larger and long-
term studies in the last five years [8, 19, 20, 21, 22, 23, 24, 10, 25, 26, 6, 27, 28, 29]. These studies
revealed a wider dissemination of model-driven practice than it was argued in the past (cf., a
systematic literature review of the years 2004-2008 by Budgen et al. [30]). The main outcomes of
the investigations are: A large number of companies use modeling for software projects on a regular
basis. Two studies report that 40%-55% of the developers and companies often use modeling
during software projects, and 11%-13% of the developers and companies use modeling most of the
time [31, 24]. Nearly all of the studies confirm that UML is the most widely used modeling language
in industry (e.g., [22, 8]). The most frequently used diagram kind is the UML class diagram, and
still the majority of developers use modeling techniques for problem understanding, documentation
and communication [26, 8]. In addition, domain-specific languages ”have achieved a significant
degree of penetration” [22] (e.g., 85% of the study’s respondents used UML, and 60% used DSLs).

1.1.2 Importance of Domain Modeling in Software Projects

Typically, early phases of software projects start with domain analysis and requirements engi-
neering [32, 33]. Domain analysis is a ”process by which information used in developing software
systems is identified, captured, and organized with the purpose of making it reusable when creating
new systems.” [33]. Domain analysis includes the creation of domain models that capture knowl-
edge of an application domain. These models can be used for a variety of tasks: Requirements
elicitation, specification, code generation, reverse engineering, explanation, documentation, design
decisions, and training [34].

Domain models are a key factor in improving communication and understanding in soft-
ware development [35, 36, 37, 38]. In a process of domain modeling different stakeholders agree
on a common set of terms, relationships and descriptions. The resulting domain models enable
a ubiquitous language [39] among groups of developers and domain experts and help to reduce
ambiguities and misunderstandings [40]. Domain modeling is often used synonymously for con-
ceptual modeling [41]. ”Conceptual modeling conventionally results in specifications that capture

12

relevant knowledge about the application domain. These specifications then guide development by
supporting communication between developers and users, promoting domain understanding and
guiding the design process” [42].

Domain modeling is not exclusively dedicated to systematically collecting information about
the respective domain and domain expert knowledge [43]. It is also about using the models
in most software development phases. Domain-driven design [39] is a well-known approach
that consequently employs domain models in the first place and connects them to implementa-
tion models very early. This development framework has proven successful in several industry
projects [44, 45, 46, 47] and has been integrated into well-known software design patterns [48].

As described in the previous section, the development and usage of domain-specific languages
has significantly increased in industry [22] and research [49] in recent years. Nevertheless, recent
studies show that there is still a high demand of domain-specific solutions for software
development [50] as well as insufficient opportunities to configure existing modeling languages for
specialized domain-specific use [51]. Consequently, with the increasing development of domain-
specific languages [52], domain analysis and domain modeling are growing in importance. This is
emphasized by the fact that UML in its recent versions is considered to be too complex [53, 54]
(e.g., ”For 80% of all software only 20% of UML is needed. However, it is not easy to find the
subset of UML which we would call the “Essential” UML.” [55]).

1.1.3 Use Cases of Domain Modeling

In the previous sections we outlined general benefits of domain modeling and model-driven en-
gineering settings, documented the growing dissemination of modeling solutions in industry and
research, and described advantages of domain modeling for software projects in general. In this
section we describe three use cases of domain modeling. Two of them are particular types of
software projects that constitute the larger part of industrial IT investments (integration
and modernization projects). The third use case (domain-specific languages) refers to software
automation using small high-level languages suited for a particular problem field (domain).

Enterprise Application Integration (EAI) [56] is the process of integrating heterogenous
software applications and systems within or across companies to enable interoperability between
them and to build added-value applications on top of them. EAI includes data integration as well
as process integration.

Application integration has become the most important software development activity. Already
in the year 2000, ”Forrester Research estimates that up to 35 percent of development time is devoted
to creating interfaces and points of integration for applications and data sources” [56]. This trend
was confirmed in 2012 by Gartner: ”By 2016, midsize to large companies will spend 33% more on
application integrations than in 2013. By 2018, more than 50% of the cost of implementing 90%
of new large systems will be spent on integration.” [57]. These estimations still hold true:

Through 2020, integration work will account for 50% of the time and cost of building
a digital platform.1

Enterprise Application Integration best practices lead to a set of EAI patterns [58] for im-
plementing integration solutions. Most important patterns to translate data between software
applications are the Message Bus pattern2, that includes the development of a common data
model, and the Canonical Data Model pattern3. The development of common/canonical data
models is very similar to domain modeling. Both types of models incorporate domain concepts
and relations used in a certain application field. A typical approach to overcome semantic hetero-
geneity in different datasets is the use of domain models and data mappings/transformations [59].
Consequently, the support of developing these data models will result in productivity increases for
integration solutions.

1https://www.gartner.com/smarterwithgartner/use-a-hybrid-integration-approach-to-empower-digital-transformation/
2http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageBus.html
3http://www.enterpriseintegrationpatterns.com/patterns/messaging/CanonicalDataModel.html

13

https://www.gartner.com/smarterwithgartner/use-a-hybrid-integration-approach-to-empower-digital-transformation/
http://www.enterpriseintegrationpatterns.com/patterns/messaging/MessageBus.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/CanonicalDataModel.html

Software Modernization, also known as software migration, is the task of rewriting or
porting existing legacy software systems to new platforms, architectures or programming lan-
guages [60]. Modernization includes improvement of applications (e.g., adding new features),
change of programming languages and runtime environments, migrating existing data architec-
tures, and making components reusable [61].

Legacy systems are highly important, because they often play a crucial role in the daily business
of enterprises. While in the past the focus of software modernization was on programming language
modernization (e.g., COBOL to modern object oriented languages [62]) and improving reusability
of software (e.g., Services Oriented Architecture (SOA) [63]), in recent years it has become more
and more important to migrate existing software applications to cloud architectures and mobile
environments [64, 65]. This includes porting applications to web-based execution environments as
well as changing data management to distributed data stores.

Software modernization includes (partial) re-engineering or reverse engineering of existing im-
plementations. This process usually starts with gaining insight into the current state of the
system by the examination of source code, configuration and documentation. The analysis results
are captured in representations (e.g., summaries, models, visualizations) different from the original
legacy artifacts.

Model-Driven Reverse Engineering (MDRE) [66] proposes the construction of domain models
for legacy system description. The process of reverse engineering is supported by frameworks
that discover domain models and application models (semi-)automatically [67]. Models for legacy
system description are then used to automatically transform parts of the original system to new
target representations.

One of the benefits of using domain modeling for software modernization is the improvement
of system comprehension [67]. It facilitates the understanding of complex coherencies by software
users (domain experts) and software developers at the same time.

Domain-Specific Languages: A DSL ”is a programming language or executable specification
language that offers, through appropriate notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain” [68]. Domain modeling and domain-specific
languages have a very close relationship. While domain modeling is used to express information
about concepts and relationships of a particular domain, a DSL consists of these domain elements,
proper notations, and interpreters to create models for that domain. It is common practice to use
domain analysis and domain modeling during the development of domain-specific languages [68].

DSL development includes phases for decision, analysis, design, and implementation of the
language [69]. Decision phase refers to the definition of purpose and intended use of a DSL. The
analysis phase comprises gathering of domain knowledge and identification of domain abstractions
and their relations. It results in a description of domain concepts and domain terminology,
usually a domain model. Design phase deals with possible DSL architectures (e.g., based on
a general-purpose programming language) and definition methods (e.g., grammars, metamodels).
Finally, the implementation phase creates interpreters, compilers, and generators for the language.

In most cases, the analysis phase of DSL development is still conducted informally although
guidelines have suggested otherwise for several years. A recent report of Kosar et al. [49] observed
that only 5.7% of analyzed DSL studies had used formal approaches. Additionally, tool support
for this phase is very limited [69]. The use of feature diagrams for DSL development is a step into
the right direction [70]. Still, the use of domain models in the early phases of DSL development is
very limited, but they especially improve communication with domain experts (the intended users
of a DSL) [71].

1.1.4 Recommender Systems for Modeling

Recommender systems provide context-sensitive suggestions to users in order to support decision-
making processes [72]. These systems recommend sets of items in a given context based on users’
preferences, background data, and algorithms [73]. Items can be anything that is of interest to
the user. Recommender systems are most widespread in e-commerce applications. In this field of

14

application the main goal is recommendation of interesting products based on the properties of
products and what users bought before or had looked at.

Recommender systems are nowadays integrated into many other applications and systems. For
example, in social networks they recommend friends or interesting persons based on the under-
lying graph structures. Autocomplete is a recommendation feature that has been successfully
integrated into search engines (query autocompletion) and mobile phones (keyboard predictions)
for many years and has become indispensable. It tries to predict the next user input based on the
previous input, statistical models, background knowledge, and a set of rules.

Integrated development environments (IDEs) have essential recommendation features as well.
For source code editors, autocomplete is usually referred to as code completion or content as-
sist. It supports developers in two ways: Completions are offered according to the programming
language grammar, and through context-sensitive pop-up lists of variables, methods, or objects
by using existing source code. These features have also been adopted by textual domain-specific
languages (DSL) that offer content assistance according to the DSL grammar.

At present, research in the recommender system community concentrates on solving large-scale
input data problems, user interaction, and evaluation of recommender systems [74]. There is an
active research community for recommendation systems in the software engineering domain [75].
Many works deal with building recommender systems and algorithms that suggest source code
artifacts and that integrate question answering websites (e.g., StackOverflow) to suggest solutions
based on expert opinions.

This thesis is motivated by the fact that recommender systems are hardly used in the area of
model-driven engineering. It seeks to introduce features similar to autocomplete and knowledge
graph widgets of search engines into modeling environments to reduce entry barriers when using
model-driven software project methods.

1.2 Challenges of Domain Modeling

Although MDE has been an active field of research for approximately 20 years, it has been recently
recognized by industry and research that model-driven engineering requires more connections
across disciplines. This PhD thesis follows this direction and works on the support of modeling
with knowledge-based systems:

Our MDE community has focused much on software and systems modeling, with-
out much interaction with modeling activities in areas such as artificial intelligence,
databases, the semantic web, or human-computer interactions. [12]

Domain modeling, as other knowledge intensive processes, was and still is a challenging task [76,
77]. Over the years this has been addressed by research several times, for example in the area of
requirements engineering:

Domain knowledge is acknowledged to be important for the acquisition and validation of
requirements specification. Unfortunately this is one of the most error prone and costly
activities in system development which has led a number of researchers to investigate
how the process of requirements capture and validation may be improved. [78]

Domain modeling requires gathering a lot of pieces of information delivered by different types
of persons, documents and other knowledge sources. The support of this process is still an open
issue, e.g., as described in a recent article by Ulrich Frank related to domain-specific modeling
languages (DSML):

First, the development of a DSML requires domain-specific knowledge that may not
be available in Information Systems or Computer Science. Thus, there is need for
collaboration with other disciplines, e.g., Business and Administration, and with rep-
resentatives of the respective domains in practice. [79]

15

Software engineering is not the only area in which domain expertise plays a crucial role. The
importance of domain knowledge and domain models was recently also addressed in the Big Data
area by both the Data Engineering community [80] and the Conceptual Modeling community [81].

This section describes the key challenges that are addressed in this dissertation. First, the chal-
lenges of acquiring domain knowledge in software project settings are described (cf., Section 1.2.1).
Then, the difficulties involved in obtaining knowledge from data sources that provide access in a
structured way and that are only available in an unstructured form are characterized (cf., Sec-
tion 1.2.2). Finally, the challenges arising from the unavailability of large conceptual knowledge
resources for domain modeling are discussed (cf., Section 1.2.3).

1.2.1 Cost of Domain Knowledge Acquisition

In a software project, it is essential that developers understand the application domain and learn
the respective concepts, their relationships and interactions. In essence, these concepts are repre-
sented by pieces of source code in the final software product. Consequently, it is very important
that domain information is interpreted correctly to meet the user’s requirements. Domain model-
ing is one of the important methods to gather domain information and domain knowledge using
formal models and notations. These models help to make the domain knowledge explicit and
available to all participants of a project.

Domain modeling and acquisition of domain knowledge is a time-consuming process [82, 83, 84].
It requires intensive collaboration between engineers and domain experts, studying large sets of
documentation, additional modeling effort, and ”can take several person-years before a useful
application program is delivered” [82]. Although this quotation goes back to the eighties, it still
very well characterizes the situation of software projects nowadays and why there is still a lot of
research carried out to automate this process [85, 86]. The main reasons for the time-consuming
process of domain knowledge acquisition are:

(1) Cold Start Problem: In a software project that aims to address an unsolved problem,
it is often not an option to build on existing domain models. Domain engineering [87] tries to
overcome this difficulty by building reusable libraries with domain information. It is a well-known
problem [88, 89] that existing knowledge bases (often created manually) do not cover enough
information or do not exist at all for certain target domains. This is usually referred to as the cold
start problem: Reusable domain knowledge will become only available if enough solutions have
already been developed using that methodology while new projects already want to benefit from
the domain knowledge. Furthermore, in cases where it is possible to rely on previous projects of
the same domain, commonalities of these projects have to be manually discovered to construct
domain models. Even if existing domain models can be reused, it is still subject to discussion and
agreement which concepts and relationships are relevant to a new software project and for which
parts new domain information has to be collected. In the end, domain models frequently have to
be developed from scratch [90, 91, 92].

(2) Different Roles and Expertises: A software project typically involves a number of
stakeholders: e.g., project managers, software engineers, modeling experts, domain experts, and
end users4. Literature commonly divides these roles into two groups: technical participants (de-
velopers) and non-technical participants (domain experts) [93]. The first group refers to persons
involved in software design, development, and modeling. The second group usually includes repre-
sentatives of the intended users of the software and persons with special knowledge in a particular
area of interest (the domain for which the software is implemented). This thesis concentrates on
domain modeling, consequently we will differentiate between modeling experts and domain experts
(see Figure 1.1). Ionita et al. [93] very well characterize the challenges of collaboration between
these two groups:

4The list is not intended to be complete, for more detailed description of software project roles we would like to
refer the reader to http://zimmer.csufresno.edu/ sasanr/Teaching-Material/SAD/.

16

http://zimmer.csufresno.edu/~sasanr/Teaching-Material/SAD/breaking%20down%20software%20development%20roles.pdf

Conceptual models represent social and technical aspects of the world relevant to a vari-
ety of technical and non-technical stakeholders. To build these models, knowledge might
have to be collected from domain experts who are rarely modelling experts and don’t
usually have the time or desire to learn a modelling language. [...] A conceptual model
consists of concepts and relations among the concepts, by which people understand a
part of the world. They are usually represented in (software) modelling tools using ab-
stract graph-like structures containing boxes, arrows, and other symbols. The problem
with these abstract representations is that domain experts whose input or feedback is
needed to construct an adequate model may be unfamiliar with the notation, and may
not be willing or able to learn it.

Ultrasonography?

Fetal anemia?

Metamodel?

Aggregation?

Modeling Expert Domain Expert

Figure 1.1: Examples of different mind-sets and roles participating in an MDE software project

The different mind-sets of both groups require a learning phase at the beginning of a project
that is a time-consuming process. With respect to domain modeling, this process can be divided
into two steps: First, the modeling expert has to learn a lot about the domain. The acquired
knowledge is then transformed into appropriate models by him. Second, the models are presented
to the domain expert by the modeling expert and discussed with him. At this point the domain
expert has to deal with the modeling notation to suggest corrections. In the course of discussion,
the modeling expert is already required to provide appropriate explanations of the models using
the domain terminology of the domain expert. The two steps are usually repeated in several
iterations, requiring additional meetings and telephone conferences. In the process of domain
model creation, the modeling expert bears the greater burden. The modeling notation is a way
of communicating the concepts and relationships of the domain that the domain expert already
knows. It is easier for him to learn a small set of modeling constructs. The modeling expert is
faced with using the correct domain terms and arranging the relationships correctly. This implies a
deeper understanding of the domain. The importance of domain language is very well summarized
by Evans [39]:

On a project without a common language, developers have to translate for domain
experts. Domain experts translate between developers and still other domain experts.
Translation is always inaccurate and hides disconnects in understanding between the do-
main experts and developers, between different developers and between different domain
experts. [...] The overhead cost of all the translation, plus the risk of misunderstanding,
is simply too high. A project needs a common language that is more than the lowest
common denominator. With a conscious effort by the team, the domain model can
provide the backbone for that common language, while connecting team communication
to the software implementation.

17

To summarize the first challenge, the effort of acquiring domain knowledge and creating
appropriate domain models is high. It is a costly activity including solitary work by the modeling
experts (gathering information from different sources such as enterprise documents and specifi-
cations) as well as a lot of communication with domain experts. At the same time, it is a very
important activity for the success of software projects [94].

1.2.2 Heterogeneity of Knowledge Bases

Generally, the field of knowledge acquisition differentiates between two types of knowledge: Tacit
knowledge and explicit knowledge [95]. Tacit knowledge refers to experiences learned by individuals
that are difficult to transfer or to verbalize [96] (know-how knowledge). Explicit knowledge is a
type of knowledge that can be expressed by words, scientific formulae, or other notations (know-
what knowledge) [97]. In this thesis, we focus on the acquisition and analysis of explicit knowledge
that is ”readily communicated and shared through print, electronic methods, and other formal
means” [97] or that can easily be made explicit. Consequently, domain modeling is a way of
extracting and transforming certain types of existing explicit knowledge (e.g., documentation,
databases) to other representations of explicit knowledge (domain models).

One of the major difficulties in knowledge acquisition is that domain knowledge is contained in
arbitrary sources. It is a time-consuming process to first find the relevant documents or artifacts
containing the required information and then manually inspect the text or data with respect to the
concepts and relationships of a domain. We differentiate between two types of knowledge sources:
structured information and unstructured information. The ”intended meaning [of structured in-
formation] is unambiguous and explicitly represented in the structure or format of the data” [98].
Unstructured information is not organized in a pre-defined manner. Its ”intended meaning is only
loosely implied by its form” [98].

Examples of structured information sources are databases, XML documents, knowledge bases,
and models. Each of them provides access to information according to a certain schema that a
user can rely on. Nonetheless, interfaces for search and retrieval may vary a lot. Consequently,
additional effort is necessary for users to learn how to query the knowledge sources. From a
user’s point of view, uniform access to all sources is not available in most cases and may only be
facilitated by building additional search engines on top of them. From a machine’s perspective,
standardized querying of all these different sources is not possible, because they all may rely on
different data models and query languages. Not only syntactic and data model heterogeneity is
a challenge, but also semantic heterogeneity [99] that concerns different meanings for the same
identifiers and names in schemes (ambiguous terms).

Unfortunately, the number of structured information sources is negligible compared to unstruc-
tured information sources. It is estimated that 80% of existing data is unstructured5. Additionally,
the majority of unstructured information is natural language text. Other examples of unstruc-
tured data are audio-visual content, log files, and source code. The amount of text data is growing
rapidly6. Apart from acquisition from structured sources, this thesis focuses on knowledge ac-
quisition from text corpora. Domain information is contained in a variety of documents, such as
text books, manuals, dictionaries, encyclopedias, or requirements specifications. Relevant facts
have to be located first and then interpreted. On the one hand, a major challenge is that humans
may manually interpret text more precisely, but cannot process the amount of text in reasonable
time. On the other hand, natural language understanding by machines is scalable, but it is a very
difficult task, because it requires contextual knowledge and has to deal with ambiguities of words
and formulations.

There are several research fields that work on sub-problems of the aforementioned challenges.
In general, there is no ready-to-use solution to make available domain knowledge from heteroge-
neous data sources. In fact, several components, tools and partial solutions have to be tailored
down to a domain knowledge extraction framework. Information retrieval [100] in general is one

5https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/
6https://www.domo.com/learn/data-never-sleeps-5

18

https://www.forbes.com/sites/forbestechcouncil/2017/06/05/the-big-unstructured-data-problem/
https://www.domo.com/learn/data-never-sleeps-5

way of facilitating the search for relevant documents with domain information, but has limited
capabilities in extracting fine-grained pieces of information from these documents. Information
integration [101] is the merging of information from different data sources with different data
structures into a common, uniform data structure. Information integration can be used in part
for the acquisition of domain information from different sources, but often requires well defined
schema information, a schema matching and a data fusion process.

Even if ready-made knowledge bases are available, as in the Linked Open Data Cloud7, the
combined access to them still presents a challenge: ”Moreover, these graphs are distributed over
many different sources with very different characteristics. [...] Not only do we need methods
to represent and analyse each kind of graph, we also require the means to combine them and to
perform multi-criteria analyses on their combinations.” [102]

To summarize the second challenge, domain knowledge is contained in multiple sources, some
in a structured form, but mostly unstructured. Consistent access to a large amount of structured
domain knowledge is not available because of the heterogeneity of file formats, access methods,
protocols, schemata, and the unavailability of explicit definitions of the meaning of the data.

1.2.3 Lack of Conceptual Knowledge Resources

Over the last decade, several projects have used automated processing techniques to create large
knowledge resources from semi-structured and unstructured data. However, in the context of do-
main modeling, there is still a shortage of knowledge resources that contain conceptual knowledge.

The first type of these projects are projects that use Wikipedia as a source. The best known
examples are DBpedia [103] and YAGO [104]. DBpedia is an extraction framework and knowledge
base that converts semi-structured information of Wikipedia’s info boxes into RDF triples. DBpe-
dia uses a proprietary data model (ontology schema with roughly 770 classes8) and collaboratively
developed mappings for extraction of class instances and relationship type instances. YAGO fol-
lows a similar approach, using Wikipedia info boxes, categories, as well as WordNet synsets. It
was extended with temporal and spatial information in subsequent versions. WikiNet [105] also
extracts facts from Wikipedia with a focus on multilingualism and the category system. These
knowledge bases aim to collect as much factual knowledge as possible from semi-structured data at
the instance level. Although they contain millions of facts, the proportion of conceptual knowledge
is very low.

The second type of resource is collaboratively gathered knowledge. Freebase [106] was the
first effort that collaboratively collected statements about real entities. Its development was
discontinued and merged into Wikidata [107], a Wiki-based fact editor. Wikidata incorporates a
more extensive data model and has already collected millions of facts for over 56 million objects9

on a manual basis. As with the first type, the goal of these projects is to gather factual knowledge,
and the collection of conceptual facts is not in the focus.

The third type of knowledge resources are linguistic databases that cover dictionary-related
content and lexical-semantic knowledge. Most resources available are based on linguistic theories
and have been created manually. On the one hand, they offer quality content, on the other hand,
they do not provide as much coverage as automated approaches. The most popular resource
is WordNet [108], a lexical database for the English language. It contains synsets (groups of
synonyms) that are linked with a few lexical-semantic relations. FrameNet [109] is a lexical
database that encodes the understanding of the English language in frame semantics, a way to
organize knowledge to understand the meaning of words. VerbNet [110] focuses on the lexical
entries of verbs with detailed syntactic-semantic descriptions and thematic roles. These knowledge
bases can be better used as sources of domain knowledge, but are not extensive enough due to
manual creation. BabelNet [111] was the first automated approach to extracting and aligning
Wikipedia content to WordNet to create a larger encyclopedic dictionary. Later releases subsumed
more and more resources such as VerbNet, FrameNet, and Wiktionary to create a single access

7http://lod-cloud.net/
8Based on http://mappings.dbpedia.org/server/ontology/classes/ as of April 2019.
9https://www.wikidata.org/wiki/Wikidata:Statistics - as of May 2019

19

http://lod-cloud.net/
http://mappings.dbpedia.org/server/ontology/classes/
https://www.wikidata.org/wiki/Wikidata:Statistics

point for lexical information. In addition, it focuses on multilingual machine translation for entries
that do not have appropriate lexicalizations.

Another resource of knowledge are common sense knowledge bases. They encode general world
knowledge in machine-readable form. Cyc [112] was one of the first efforts to capture common
sense concepts and knowledge. The Cyc Project invested a man-century during several years
to manually collect facts and axioms. The Open Mind Common Sense (OMCS) project10 was
launched in 1999 as a crowdsourcing knowledge project to collect common sense knowledge in
the form of English sentences. In 10 years, more than a million facts were collected. It became
the main base for ConceptNet [113], a knowledge graph that encodes common concepts using
words / phrases and labeled edges between them. ConceptNet has additionally been extended
by converting portions of Wiktionary, WordNet, OpenCyc, and other manually created resources.
Due to its integration with Wiktionary, ConceptNet also focuses on multilingualism.

In addition to knowledge resources that have been built manually or created by processing semi-
structured content, there is a final category of methods that aims to create knowledge resources
from unstructured data. Information extraction [114] utilizes various tasks from computational
linguistics [115], artificial intelligence and information retrieval [116] to generate structured facts
from natural language text. Most extraction systems aim to produce factual statements and differ
in the degree of automation and initial effort required to run the extraction process (pattern-based
extraction, (semi-)supervised learning, distant supervision, unsupervised learning). Well-known
systems are: TextRunner [117], ReVerb [118], NeLL [119], which can be summarized by the term
Relation Extraction (RE). The extraction of conceptual knowledge from text has received much
less attention. There is the pioneering work of Hearst [120] for the discovery of is-a relationships
and some work on taxonomy induction [121, 122], but in recent years research has focused on
a simpler hypernymy relationship detection [123], which does not distinguish between class and
instance levels.

To summarize the third challenge, there are a few usable lexical-semantic resources for
domain modeling, but most have been created manually and are not extensive enough. Most
other approaches to information extraction and auto-generated knowledge bases focus on factual
knowledge at the instance level that cannot be used for conceptual-level domain modeling. In
addition, much of the work is based on either WordNet or Wikipedia, which limits the structure,
diversity, and domain coverage of knowledge bases.

1.3 Objectives, Contributions and Outline

This section summarizes the goals and main contributions of the thesis to the domain modeling
challenges outlined before. The use of domain knowledge in domain models is an important
factor in the implementation of software projects. As described in the previous section, domain
modeling is hampered by time-consuming manual activities to capture domain information, the
unavailability of uniform access to structured knowledge bases, and the lack of large conceptual
knowledge sources.

This work aims at developing methods and tools to provide automated modeling recommenda-
tions for the creation of domain models, i.e., domain knowledge is made available directly during
the modeling process. We propose to use automated knowledge acquisition from text corpora and
integration with semantic databases to provide context-sensitive suggestions of model elements.
The vision of semantic modeling support is as follows: The content of a domain model is analyzed
during its development. Based on the terms used in the model, the developer receives information
about related content and suggestions as to what he or she might include in the model. The
suggestions will be adjusted with each model change.

10https://github.com/commonsense/omcs

20

https://github.com/commonsense/omcs

Given the challenges of domain modeling and the vision of automated modeling support, the
research question addressed by this thesis is ”How to improve the development of domain models
through automated knowledge acquisition?”. To answer this question, the following is considered.

(1) Where does the required knowledge come from? Semantic knowledge bases and ontologies
are an important source of structured knowledge, and if insufficient, text datasets are analyzed to
gain additional knowledge.

(2) How can the necessary knowledge be acquired automatically? We propose the automated
construction of large semantic networks of related terms from text using natural language pro-
cessing as well as automated querying of existing knowledge bases.

(3) How can the acquired knowledge be used to improve modeling? Acquired knowledge is
transformed and used for context-sensitive recommendations, depending on the terms and relations
in a domain model and what is currently being changed in the model.

(4) How does model development affect the acquisition of knowledge? At each step of a modeling
process, guidance needs to be adapted to the changing content of a model.

To answer these questions, this work contributes to four areas. The first two contributions deal
with the acquisition of domain knowledge from unstructured and structured sources. The third
and fourth contributions focus on the supply of accumulated knowledge in the domain modeling
process.

Contribution 1: Semantic Network of Terms The main contribution of this thesis addresses
research challenge 3 (the lack of conceptual knowledge resources) with a semantic network of
related terms (SemNet) focusing on the conceptual level. SemNet was constructed automatically
using pattern-based extraction on a large N-gram text corpus. The approach relies on syntactic
properties of sentences and statistical features of text corpora to perform a domain-independent
extraction. The key features of the approach are: it only requires computational cheap shallow
linguistic analysis and the extraction is directly performed on the N-grams that serve as proxy for
the original text corpus. SemNet features almost 6 million unique one-word terms and multi-word
expressions and 355 million weighted binary and ternary relationships between them.

Contribution 2: Ontology Connector The second contribution deals with research chal-
lenge 2 (heterogeneity of knowledge bases) and enables uniform access to lexical information
contained in structured knowledge bases. The OntoConnector realizes a mediator-based querying
approach that allows to integrate several types of knowledge bases on-the-fly with no effort. In
case knowledge bases do not use standardized data models, a template-based strategy for SPARQL
endpoints allows to integrate nearly every proprietary knowledge base.

Contribution 3: Semantic Modeling Support We approach the first research challenge (cost
of domain knowledge acquisition) by analyzing the types of operations a user can perform to change
a model and defining strategies for each modeling scenario to provide domain knowledge during
the modeling process. In addition, we develop semantic mappings between domain modeling
and knowledge representations to enable the automatic retrieval of domain knowledge and its
transformation into modeling proposals. The semantic modeling support provides the theoretical
basis for modeling recommendations.

Contribution 4: Domain Modeling Recommender System The fourth contribution ad-
dresses the first research challenge from a practical point of view, how domain knowledge and
recommendations can be made available in a real modeling environment. The DoMoRe recom-
mender system implements the developed support methods and integrates the semantic network
of terms with connected lexical knowledge sources. This allows context-sensitive information to be
provided during domain modeling in a Model Advisor and to propose semantically related names
for model elements ordered by relevance in a Semantic Autocompletion feature.

21

Outline. The thesis is structured as follows. Chapter 2 introduces fundamentals of software
modeling, knowledge bases, information extraction, and recommender systems relevant to the
thesis. Chapter 3 presents our method for semantically supporting domain modeling by using
knowledge contained in text datasets and structured knowledge bases. In Chapter 4 we describe
the automated extraction of such knowledge from text and construct a large-scale semantic network
of related terms (SemNet). Chapter 5 is devoted to the extraction of structured lexical and con-
ceptual knowledge by utilizing knowledge base querying (OntoConnector). Chapter 6 presents the
implemented domain modeling recommender system (DoMoRe) that generates context-sensitive
modeling suggestions using SemNet and OntoConnector. Chapter 7 describes the research projects
in which the developed methods and tools were applied and reports on practical experiences. Fi-
nally, Chapter 8 summarizes key research results and gives future work directions.

References. This work uses references to web addresses in addition to citations. The last access
dates to the resources are not specified separately. All URLs referenced in this thesis were reviewed
for availability during May 1-5, 2019.

22

Chapter 2

Foundations

2.1 Introduction

This chapter describes foundations in the relevant research fields for this work. This PhD thesis
connects concepts, approaches and tools from mainly four areas of research, as shown in Figure 2.1.

Thesis

Application Area Information Source

Software Modeling Knowledge Bases

Recommender Systems Information Extraction

Knowledge CreationModeling Support

Figure 2.1: Main research areas related to this thesis

The application area of this thesis is software modeling, in particular domain modeling, an activ-
ity in software engineering to support analysis and development steps by using formal models. The
field of knowledge bases deals with the explicit specification of factual knowledge about concepts
and entities. We use knowledge bases as source of information to support domain modeling. In-
formation extraction is the process of harvesting structured facts from unstructured data sources.
This thesis utilizes methods from this field to create new knowledge sources. Recommender sys-
tems provide context-sensitive suggestions to users in order to support decision-making processes.
The presented recommender system supports the development of domain models by using lexical
information of knowledge bases and extracted information.

2.2 Foundations of Software Modeling

This section presents an introduction to the most important terms, concepts and methods of
software modeling that are relevant to this thesis.

23

The Object Management Group (OMG)1 describes software modeling or modeling in general
as ”[...] the designing of software applications before coding” [124]. The general goal of modeling
is to raise the level of abstraction in complex software projects by using models (cf., Section 2.2.1).
These models are usually created with the help of metamodels (cf., Section 2.2.2) and modeling
languages (cf., Section 2.2.3), that have different purposes, such as the description of a system’s
static structure or the behavior of software components. This thesis concentrates on domain
modeling (cf., Section 2.2.4) in which models are created that describe real-world concepts and
relationships of the application areas in which software is used. Furthermore, this chapter describes
important methods of software development that consistently use modeling (cf., Section 2.2.5 and
Section 2.2.6).

2.2.1 Models

Models are used in a variety of engineering disciplines as representations of reality. They are
usually created to study or analyze a certain aspect of a real thing before constructing it. In our
case, the engineering discipline is software engineering that deals with the systematic construction
of software systems. Software engineering is a complex task, consequently models help to reduce
complexity in order to improve the way software is built.

A clear definition of the term model is difficult [125, 126]. A literature review of software
modeling papers in the 2000s already revealed nine different definitions [127]. On the one hand,
models have been used intuitively ever since, and on the other hand, the term is heavily overloaded.
In this thesis, the common practice in literature [127] is followed that a description of models is
approached by using certain properties. One of the most important notions on what a model
constitutes was defined in Herbert Stachowiak’s model theory. According to his theory a model
must meet three criteria [128]:

1. Mapping criterion: Models are always models of something, namely illustrations, represen-
tations of natural or artificial originals, which themselves can be models again.

2. Reduction criterion: Models generally do not capture all the attributes of the original repre-
sented by them, but only those that seem relevant to the respective model creator or model
user.

3. Pragmatic criterion: Models are not clearly assigned to their originals. They have a replace-
ment function a) for certain model-utilizing subjects, b) within certain time intervals, and
c) are subject to certain mental or actual operations.

These criteria mean that there must be an original, which is described by the model, that the
model is an abstraction, and that it has a purpose, thus substituting the original. Abstraction is
the key property of a model. It allows to focus on specific aspects without considering the full
complexity. Among abstraction, Selic [16] defines five characteristics that a model must possess
within a software engineering context:

1. Abstraction: A model is always a reduced rendering of the system that it represents.

2. Understandability: What remains by abstracting details must be presented in a comprehen-
sible form.

3. Accuracy: A model must provide a true-to-life representation of the modeled system’s fea-
tures of interest.

4. Predictiveness: By using a model it should be possible to correctly predict interesting but
nonobvious properties of the modeled system.

5. Inexpensiveness: It must be significantly cheaper to construct and analyze a model than the
modeled system.

1http://www.omg.org/

24

http://www.omg.org/

Models may come in several forms. A useful categorization into graphical, mathematical, and
textual models was proposed by Liddle [129]. The explanations of graphical and mathematical
models are adopted in this thesis, but another definition of textual models by Jouault [130] is used,
mainly for the reason that in software projects natural language text is considered too imprecise
to be a model.

1. Graphical models are diagrams that depict concepts using lines, shapes, symbols, and usually
some text.

2. Mathematical models describe aspects of systems as formulae.

3. Textual models describe parts of a system using specific syntaxes and grammars.

This thesis concentrates on graphical models used for software engineering tasks that consist of
a visual notation (using a concrete syntax) and an internal data model (using an abstract syntax)
to store the information that is expressed with the graphical model. Despite the difficulties of a
clear definition of the term model, the definition of A. Brown [131] is most suitable for this work:

Models provide abstractions of a physical system that allow engineers to reason about
that system by ignoring extraneous details while focusing on the relevant ones.

For a more detailed analysis of model definitions and relations the reader is referred to the
work of Muller et al. [127] and Rodriguez-Priego et al. [132].

2.2.2 (Meta-)Metamodels

The creation of models requires to know what can be expressed and what assertions form a valid
model. A metamodel describes how to formulate models. Gašević et al. [133] define a metamodel
as follows:

A metamodel is an explicit model of the constructs and rules needed to build specific
models within a domain of interest.

This definition states that a metamodel is a model as well. Consequently, a metamodel adheres
to the same properties and criteria described in the previous section. Following this recursive
definition, the specification of how to construct a metamodel is provided on the next meta-level, in
a meta-metamodel. Theoretically, this chain of meta-levels could be arbitrarily long. For practical
reasons, it is common to limit the number of levels to four, which has been discussed by several
authors (e.g., Bézivin[134], Atkinson & Kühne [135], Henderson-Sellers [136], Aßmann [137]) with
its advantages and disadvantages. This four-level metamodeling architecture is common practice
in model-driven engineering and was popularized by the Meta Object Facility (MOF) specification,
which will be described in the following paragraph.

Meta Object Facility (MOF). MOF [138] is an Object Management Group (OMG) standard
that provides a meta-modeling language to define metamodels. It also defines repository interfaces
for model element storage and interchange across applications. MOF consists of the Essential
MOF (EMOF), a subset of the Complete MOF (CMOF), which provides the core facilities to
build metamodels. MOF is based on the principle that metamodels reside on one level and their
models are located one level below. As illustrated in Figure 2.2, the practical implementation of
this principle is a metamodeling architecture with four layers.

At the M3 Layer, the MOF meta-metamodel is located. It is the foundation for defining any
modeling language and provides the key concepts for metamodel creation (e.g., meta-elements to
specify classes, attributes or associations). MOF is self-defined, it conforms to its own language.
This reflective mechanism allows the limitation to a practical number of modeling layers.

At the M2 Layer, metamodels are created using the MOF language, such as the UML meta-
model, the CWM metamodel2, or any other metamodel for a user-defined modeling language.

2https://www.omg.org/spec/CWM/About-CWM/

25

https://www.omg.org/spec/CWM/About-CWM/

Metamodels at this level define the elements of which a model can be constructed, what proper-
ties these elements have and how these elements relate to each other.

The actual models that abstract from reality are located at M1 layer. For example, models
on this level are class diagrams or use case diagrams, in case UML is used. In this metamodeling
approach, the relationships between M1, M2, and M3 levels are called conformsTo (as described by
Favre [139] and Bézivin [134]), meaning that a model was formulated according to the definitions
and rules of its metamodel.

The lowerM0 Layer differs from the other layers as it contains the things that were abstracted
from (the originals according to Stachowiak). It separates reality from the modeling space. Real
systems or other real objects on M0 layer are representedBy models on the M1 layer. Earlier
versions of the MOF specification were based on instanceOf relationships between all levels. M0
layer was included in the modeling space, which led to a lot of confusion [140]. MOF is a strict
modeling paradigm [141], in which a model element on one layer must have a correspondence to
a model element on the layer above. An alternative approach is the ISO/IEC 24744 specification
that allows relations across multiple levels and different types of relations between layers.

M3 Layer

Meta-Metamodel

M2 Layer

Metamodel

M1 Layer

Model

M0 Layer

Reality

MOF

UML

Metamodel

Custom

Metamodel
Custom

Metamodel

conformsTo

Custom

Metamodel
UML

Models

conformsTo

Models based on

custom metamodel

conformsTo

System

representedBy

conformsTo

Figure 2.2: Four-layer metamodeling architecture, after [142] and [134]

Ecore. Ecore is a near-standard implementation of the Essential MOF specification [143]. Ecore
is part of the Eclipse Modeling Framework (EMF)3 and serves as a common meta-metamodel
to build metamodels (abstract syntaxes) or domain models of domain-specific languages (DSLs).
Ecore, EMF, and other development frameworks of the Eclipse Modeling Project4 are the most
widely used open source tools to build modeling languages, domain-specific languages and ap-
propriate editors. The naming of Ecore in literature is often confusing, because sometimes it is
referred to as the Ecore metamodel and sometimes it is called Ecore meta-metamodel. Neverthe-
less, its main purpose is to develop metamodels of DSLs. Thus, we follow the practice [142] that
Ecore is located at M3 layer of the metamodeling architecture (cf., Figure 2.2) and call it Ecore
meta-metamodel.

3https://www.eclipse.org/modeling/emf/
4https://www.eclipse.org/modeling/

26

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/

2.2.3 Modeling Languages

In the previous sections, models, which are the artifacts that convey abstracted information about
a software system, as well as metamodels that specify the concepts and rules to construct models
have been introduced. But more parts are necessary, which make up a modeling language. A
definition by Booch et al. compares modeling languages to natural languages [144]:

A language provides a vocabulary and the rules for combining words in that vocabulary
for the purpose of communication. A modeling language is a language whose vocabulary
and rules focus on the conceptual and physical representation of a system.

Vocabulary and combination rules of a modeling language are defined in a metamodel. Thomas
Kühne [145] relates languages to the metamodeling layers architecture as shown in Figure 2.3.
The modeling language is a separate concept and the metamodel is an integral part of a modeling
language. A model is expressed using a language and a language is defined by a metamodel. The
same applies to the metalevel above. Instead of the conformsTo relationship Kühne uses linguistic
instanceOf to emphasize that models are valid expressions of a language. It is an inter-level
relationship in contrast to the intra-level relationship ontological instanceOf, a relationship on the
same level between different logical units.

Meta-

Metamodel

Meta-

Language

Metamodel Language

ModelSystem

defines

defines

models

linguistic

instanceOf

linguistic

instanceOf

Figure 2.3: Language definition stack after Kühne [145]

So far only available elements and combination rules of a language have been discussed. These
definitions only refer to the syntax of a modeling language. According to Karagiannis and Kühn, a
modeling language is described by syntax, notation, and semantics [146]. These three components
are also often referred to as abstract syntax, concrete syntax and semantics (cf., Selic [147] and
Atkinson [148]).

Abstract syntax addresses the structure of the language separated from its notation. It
defines the language concepts and how they can be combined. Additionally, it allows to verify the
well-formedness of a model. Depending on the approach, well-formedness rules can also be defined
separately from abstract syntax. The two most common techniques for abstract syntax definition
of a modeling language are metamodels [148] and grammar definition languages (e.g., EBNF5).
The terms abstract syntax and metamodel are often used interchangeably [149].

Concrete syntax (notation) refers to the visual representation of the modeling language con-
cepts. Graphical modeling languages, often used in conjunction with metamodels, usually define
shapes, labels and connections that are arranged in diagrams (e.g., boxes connected with arrows).
Textual modeling languages, usually based on grammars, use keywords, special characters, and
parameters for the language elements. Whereas a modeling language can have only one abstract
syntax, it is possible to define multiple different concrete representations [147].

5Extended Backus-Naur form

27

Semantics define the meaning of the modeling language concepts. There are approaches that
define semantics with the help of a semantic domain (e.g., with the help of ontologies or other
formal languages) and a semantic mapping that links the language elements of the abstract syntax
to elements in the semantic domain [146, 150]. It is also very common to describe semantics of
language elements informally using natural language text (e.g., most of the UML is described like
that). Finally, semantics can be described in terms of behavior of the model elements. These
executable semantics are similar to programming languages that describe the behavior of the
program when it is executed. A definition by da Silva [126] very well summarizes all the previously
described concepts:

We define modeling language as a set of all possible models that are conformant with the
modeling language’s abstract syntax, represented by one or more concrete syntaxes and
that satisfy a given semantics. Additionally, the pragmatics (of a modeling language)
helps and guides how to use it in the most appropriate way.

Unified Modeling Language. The UML is the most widespread modeling language for
software construction [22, 8] (see also Section 1.1.1). It ”is a graphical language for visualizing,
specifying, constructing, and documenting the artifacts of a software-intensive system” [144]. UML
is the outcome of an initiative to harmonize several object-oriented methods in the early nineties.
It emerged from the Booch method by Grady Booch, the object-modeling technique (OMT) by
Rumbaugh and the Object-Oriented Software Engineering (OOSE) by Jacobson (”the three ami-
gos”). From the beginning, software organizations where integrated into the development of UML
making it the de facto standard language for software specification and design in industry [8].

UML distinguishes two types of models for software construction: modeling the structure of
a system and modeling the behavior of a system. Structural aspects refer to the static parts
of models that represent conceptual or physical elements (e.g., classes, components). Behavioral
aspects are the dynamic parts of models that describe the interactions between the structural
elements and their internal states during lifetime. The objective of UML is not only the use of
models for software construction. UML is a graphical language, thus it facilitates understanding of
software systems and communication between different stakeholders involved in a software project.

UML provides several diagram types for structural description. The most important dia-
grams [22] are class diagrams, which describe sets of objects that share the same attributes, op-
erations, relationships, and semantics [144], component diagrams, which show pieces of assembled
software parts and their connections, and deployment diagrams, which describe an architectural
view of run-time nodes and the distribution of components.

Most often used behavioral diagrams are activity diagrams, which show the flow of control
among objects, use case diagrams, which describe a high-level view of the behavior of the system
in relation to different types of users (actors), sequence diagrams, which describe a time-ordered
interaction between objects using messages, and statechart diagrams, which model the event-
ordered view of a class or interface using states and transitions.

We will not elaborate more on the large possibilities of the UML language(s), as this thesis
concentrates on the support of modeling domain information that is predominantly knowledge
about concepts and types of entities of domains. For further reading we refer the reader to the
books of Booch et al. [144] and Oestereich [151], and to the UML specification 2.5 [152] that
describe all the 14 diagram types of UML in detail. In this section, we will only provide an
example of a UML class diagram that is the most widely used diagram type to capture domain
information. A quote from the Unified Modeling Language User Guide very well describes the
importance of classes [144]:

You use classes to capture the vocabulary of the system you are developing. These
classes may include abstractions that are part of the problem domain, as well as classes
that make up an implementation. You can use classes to represent software things,
hardware things, and even things that are purely conceptual.

Figure 2.4 depicts a set of classes from the school domain, their attributes and relations.
The class diagram is based on a diagram of Jacobson et al. [144], to which we added additional

28

attributes for all classes. Such a diagram could emerge from the early development process of
a school information system. It shows that a School consists of one or more Departments

(Composition relationship – departments cannot exist on their own), and one or more Students
are members of a school (Aggregation relationship). Courses are associated to departments
(Association relationship), and any number of students can attend any number of courses. Every
department has a set of Instructors that teach the courses, and one of them may be the chair
of a department. The attributes, such as name, address, and phone number, are the properties
that should be available in the school information system for the respective classes.

-title
-course_number

Course

-name
-phone_number

Department

-name
-address
-phone_number

School

-name
-email
-student_id

Student

-name
-email

Instructor

+chairperson

0..1

0..1

assignedTo

1..*

1..*

attends

**

1..*

1..*

has

1..*1

member

*

1..*

teaches

* 1..*

Figure 2.4: Example of a UML class diagram, after [144] with some additions

2.2.4 Domain Modeling

In software engineering, domain modeling is used to capture concepts and relationships of a certain
application area in a domain model with respect to a specific software project. A definition by
Iscoe et al. [34] describes:

Domain models are representations of an application domain that can be used for a va-
riety of operational goals in support of specific software engineering tasks or processes.

This definition focuses on the use of domain models for particular development tasks. Repre-
senting an application domain (also called the problem domain [32]) deals with organizing specific
knowledge of that domain. A definition by Evans [39] pays attention to the captured knowledge:

The domain model is not a particular diagram; it is the idea that the diagram is intended
to convey. It is not just the knowledge in a domain expert’s head; it is a rigorously
organized and selective abstraction of that knowledge.

The previous sections described technical prerequisites of modeling and modeling languages.
In contrast, domain modeling is concerned with the content of the models. Domain modeling is
not necessarily bound to using a specific modeling language, different kinds of modeling techniques
are possible. In most cases domain modeling focuses on the explicit formulation of technical terms
and their relationships, as the following quotation of Atkinson indicates [35]:

One important purpose of domain models is to serve as a description of the problem
that is understandable to the widest possible range of stakeholders.

In the following, we shortly introduce the most important concepts related to domain modeling.
Domain Analysis is the prerequisite for domain modeling. It comprises collecting information
in the field of business or technology in which a piece of software is to be used. The goals of

29

domain analysis are the improvement of communication among stakeholders that will lead to
faster development and the assembly of domain knowledge that will result in improved designs
and more adaptable systems. In this thesis we adhere to the general definition of domain analysis
by Prieto-Dı́az: ”domain analysis can be seen as a process where information used in developing
software systems is identified, captured, structured, and organized for further reuse” [33]. Domain
analysis results in the creation of several domain models with different purposes. Important for
this thesis are domain dictionaries and notations [153] (thesauri, vocabularies, concept models,
and concept representations).

Domain Engineering is a set of activities for creating software products based on reusable
software assets. This software engineering method is two-fold and consists of two interlinked
phases: One phase (domain engineering) is dedicated to the creation of reusable software arti-
facts (software product lines [154]), and the other phase (application engineering) concerns the
development of applications adapting and customizing these software artifacts. Widely used do-
main engineering methods are based on feature models (e.g., Feature-Oriented Domain Analysis
(FODA)) to determine commonalities and variabilities of software product lines and to derive soft-
ware applications using configuration. These methods are not subject of the thesis. In contrast,
we concentrate on the domain engineering phase, in particular on the domain analysis and domain
design sub tasks [87].

Domain-Driven Design is an approach to complex software systems design that puts the
domain and domain logic at the center of development. ”Every software program relates to some
activity or interest of its user. That subject area to which the user applies the program is the
’domain’ of the software.” [39]. The primary concepts of domain-driven design are the central
domain model, the ubiquitous language, the consequent use of model-driven design and several
design patterns and concepts to continuously extract relevant and refined information for software
design. The domain model collects as much knowledge as possible about the domain as described
in the previous paragraphs. The ubiquitous language is a common language tightly coupled with
the domain model that both domain experts and modeling experts understand. The use of model-
driven design ensures that the domain model and the source code are tightly coupled as well. This
is mainly implemented using a layered architecture that separates domain logic from application
logic, user interface, and infrastructure. Domain-driven design incorporates the following strategic
design principles. (1) Bounded context: models have clear boundaries in which they should be
kept consistent with terms and code. (2) Continuous integration: merging of implementation
artifacts should be done with an automated process including automated tests. (3) Context maps:
they provide the domain structure in terms of bounded contexts and their connections.

Conceptual Modeling has its origin in the database community and emerged from entity-
relationship modeling. ”Conceptual modeling is about describing the semantics of software appli-
cations at a high level of abstraction” [155]. There are three types [156] of conceptual modeling:
(1) A software solution is modeled. That means a system is described in terms of structure mod-
els, behavior or functional models, and interaction and user interface models. (2) The domain
in which a piece of software operates is modeled. This type of modeling is often used synony-
mously with domain modeling and has the same goals. A conceptual model of a domain is the
abstract description of real-world concepts and their relationships. (3) The impact of the software
solution on the domain is modeled. This type of conceptual modeling is less common and deals
with the description of how a software solution interacts with domain entities and actors to satisfy
stakeholder goals [156].

2.2.5 Domain-Specific Languages

Domain-specific languages (DSLs) are computer languages tailored to a specific application do-
main [69] in contrast to general purpose languages (GPLs). DSLs usually provide abstractions
and notations for one particular field of interest that enable domain experts to participate in the
development and configuration of software systems. At the same time they enable increase in
productivity by providing the corresponding tooling to create models of the respective language
and the infrastructure to process the models, generate code from them, or directly execute them.

30

Several criteria have to be considered for the development of domain-specific languages. DSLs
can be internal/embedded, that means that they use a host language, add domain-specific language
elements and restrict other language constructs. Embedded DSLs can reuse the host language
infrastructure, such as compilers and interpreters, but are limited in the flexibility of how syntax
is defined in the host language. In contrast, external DSLs are designed from scratch, and they
are completely free in choice of constructs, syntax and notation, but the infrastructure must be
developed from scratch as well. With respect to notation, textual DSLs are based on grammar
definitions and accompanying parsers, whereas graphical DSLs have visual notations. Graphical
DSLs are often called domain-specific modeling languages (DSMLs) [157]. Each of the categories
allow hybrid approaches. More design decisions and guidelines are documented in [158] and [71].
Popular DSL examples are: Graphviz, SQL, HTML, and LATEX. Typical language workbenches
for textual language development are xText6, Jetbrains MPS7, and MontiCore8, and for graphical
DSL development Eclipse Modeling Project (EMF+GMF)9, Sirius10, and MetaEdit+11.

Figure 2.5: The concepts and components of domain-specific languages. Taken from [47]

Figure 2.5 shows the typical components of domain-specific languages. A DSL consists of
a metamodel, a concrete syntax and semantics. A DSL is a modeling language to formulate
formal models of a domain. Völter [47] sees both abstract syntax and static semantics (well-
formedness rules) as part of the meta model. Other authors use metamodel and abstract syntax
as synonyms [159]. Since the metamodel describes the relevant concepts of the domain, metamodel
and domain model are also often used synonymously. The meta model defines relevant domain
concepts and their relationships for the DSL. It is the internal data structure of a DSL that
any other processing step will use. The abstract syntax can be defined using a grammar or a
metamodel. DSLs can have multiple concrete syntaxes. The concrete syntax, either textual,
graphical or hybrid, is the interface with which the DSL user interacts. Semantics describe the
meaning of the language elements [150]. There are several approaches to semantic descriptions as
described in Section 2.2.3.

Domain-specific modeling (DSM) is an approach of designing software systems with the sys-
tematic use of domain-specific languages. It includes the development of DSLs as well as the usage
of DSLs. The main goal of DSM is to generate code from domain-specific models [13].

6https://www.eclipse.org/Xtext/
7https://www.jetbrains.com/mps/
8http://www.monticore.org/
9https://www.eclipse.org/modeling/

10http://www.eclipse.org/sirius/
11http://www.metacase.com/mwb/

31

https://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/
http://www.monticore.org/
https://www.eclipse.org/modeling/
http://www.eclipse.org/sirius/
http://www.metacase.com/mwb/

2.2.6 Model-Driven Methods

Model-Driven Engineering (MDE). Model-driven engineering is an umbrella term for var-
ious approaches to software and systems engineering in which models play a first-order role. In
general, MDE is also applied in other engineering disciplines. The emphasis is on driven, mean-
ing that throughout all engineering tasks the work is centered around models: programming tasks
are treated as secondary, and code shall be generated where suitable. Model-Based Engineer-
ing (MBE) and Model-Based Software Engineering (MBSE) are often used synonymously for
MDE [4], although they have a slightly different meaning. ”Model-based” is used in the sense
that models still play an important role for development, but are not always used as first-class
citizens12. Finally, there is also Model-Driven Development (MDD), which focuses on de-
velopment tasks (e.g., requirements elicitation, analysis and design). For example, Model-Driven
Architecture (MDA), which will be described in the following paragraph, can be seen as one
concrete implementation of MDE [126] with a strong focus on MDD.

Model-Driven Architecture (MDA). A very important initiative for the use of metamod-
els, models and modeling in software engineering is the Model-Driven Architecture (MDA) of the
OMG. MDA is comprised of a set of standards for the specification of models and their trans-
formations into other models and source code. The essential characteristic of MDA is separation
of concerns. It enables the specification of business concerns independent of system constraints
and allows the specification of systems independent of the platforms they are supposed to run on.
”A platform is the set of resources on which a system is realized.” [160]. The most important
standards of MDA are [161]:

• Meta Object Facility (MOF): A standard that enables modeling language definition.

• XML Metadata Interchange (XMI): A standard that facilitates interchange of models via
XML documents.

• Unified Modeling Language (UML): A language for specifying the structure and behavior of
systems.

• Common Warehouse Metamodel (CWM): A specification for data repository integration.

• Query View Transform (QVT): A mapping language to define transformations of one model
to another.

MDA promotes the consequent use of these specifications for software systems development. It
defines three architectural layers [160] (cf., Figure 2.6) that correspond to the level of abstraction
on which the development takes place. On the most abstract level business and domain models
are defined to capture information about real objects that are later managed by the system. In
earlier versions of the MDA these models were called Computation Independent Models (CIMs).
Technology-independent models of the software system reside on the logical system models layer
(Platform Independent Models, PIMs). They describe interactions between business entities and
software components independent of implementation-specific details. Implementation models
(also called Platform Specific Models, PSMs) describe how a particular system or component is
implemented using a specific technology (e.g., J2EE, .NET, Web Services).

MDA aims at automating transformations of models either from one representation to another
on the same level or across levels of abstraction. Transformation specifications define a set of
patterns that are applied to model elements of a source model. A transformation engine that
executes the specification creates or modifies model elements in a target model. MDA transfor-
mations are specified using the QVT language [162]. Figure 2.6 illustrates the general principle
of model transformation. The models in this example are: A platform independent model, which
was created using a platform independent metamodel, a platform specific metamodel, and the

12https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/

32

https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/

Platform

Independent

Metamodel

Platform

Independent

Model

conformsTo

Platform

Specific

Metamodel

Platform

Specific

Model

conformsTo

Transformation

Specification

Source Language

Target Language

generate

Computation

Independent

Model

Computation

Independent

Metamodel

... ...

Business and

Domain Models

Logical System

Models

Implementation

Models

conformsTo

Figure 2.6: The principle of model transformation in MDA, after [161]

transformation specification, which defines a mapping on metamodel level between platform inde-
pendent metamodel and platform specific metamodel. All four artifacts are used to generate the
target platform specific model.

2.3 Foundations of Knowledge Bases

The field of knowledge bases deals with explicit specification and collection of factual and schematic
knowledge about real-world concepts and entities and its storage in semantic databases to provide
querying and reasoning services. The term knowledge base originates from the field of expert
systems in AI research in the 1970s: ”One can define an expert system as a knowledge system
that is able to execute a task that, if carried out by humans, requires expertise.” [163]. At that
time expert systems were rule-based systems, usually consisting of three main components: a
knowledge base that contains domain facts and domain rules, a reasoning or inference engine,
and a user interface. Over time expert systems evolved to Knowledge-Based Systems (KBS)
that incorporate more complex knowledge structures and more sophisticated automated reasoning
services. Knowledge bases have not only been developed in the context of these systems, but have
become complex systems themselves, as the following definition shows:

A knowledge base is a database that is used to manage knowledge. The information
in the knowledge base can be accessed using logical operators to determine appropriate
retrieval items. Often a knowledge base uses an ontology or data model to define its
classification scheme. As applied here, the knowledge base is a highly contextualized
set of classifications and relationships related to a focused core of content knowledge.13

The following sections present what kinds of knowledge representations exist, what kinds of
standards exist to encode knowledge, how knowledge can be stored and retrieved, and how knowl-
edge is interlinked on the Web.

13From IGI Global Dictionary https://www.igi-global.com/dictionary/knowledge-base/16266

33

https://www.igi-global.com/dictionary/knowledge-base/16266

2.3.1 Knowledge Representation

Knowledge bases are part of the Semantic Web idea: describing the meaning of web documents
in machine-readable form (first promoted by Tim Berners-Lee) [164] with the ultimate goal to
express information in a machine-interpretable and machine-understandable form. Generally, the
main intention of web documents and their markup languages is the presentation of information
to humans. Semantic web documents extend normal web documents with additional information
enabling machines to process the information. The Semantic Web provides a set of standards
to implement semantic descriptions of documents with the goal to build models that describe
the world in abstract terms, to draw meaningful conclusions from encoded knowledge, and to
distribute, interlink, and reconcile knowledge on a global scale [165].

One of the prerequisites for marking up documents with additional meaning is the ability to
point to already encoded knowledge. The fields of knowledge engineering [166] and ontology
engineering [167] deal with acquiring and organizing knowledge in a machine-processable form
to build information systems that manage the conserved knowledge and offer reasoning service
on top of them. ”Knowledge engineering is not some kind of mining from the expert’s head, but
consists of constructing different aspect models of human knowledge.” [163].

There are several types of knowledge representation [168]: A controlled vocabulary is a way
to consistently organize terms and expressions whose meanings are explicitly defined (to avoid
homonyms). Optionally, each of the terms is assigned a preferred descriptor term (or index term)
to additionally avoid synonyms. Controlled vocabularies usually do not contain any relationships
between terms and are often used to index existing documents for search.

A taxonomy is a hierarchical classification system. It consists of controlled vocabulary terms
that have relationships to each other so that a tree structure is formed. Terms can have exactly
one relationship to a term located on the level above (superordinate terms) and one or many rela-
tionships to terms located on a level below (subordinated terms). Relationships on the same level
are not allowed. There are variants of taxonomies that allow multiple parent terms (polyhierar-
chy) realized through duplication of terms. Terms in taxonomies usually represent classes (entity
groups with common characteristics) [142]. Typical relationships are subclass or is-a relationships.

Semantic networks are knowledge representations using directed graph structures. They
usually consist of nodes that represent concepts, and arcs that represent a conceptual relationship
between two nodes [169]. Nodes have labels and can have types, usually defined by means of a
taxonomy (concept hierarchy). A semantic network is not limited to a specific relationship type
(e.g., linguistic, spatial, causal, or role relationships can be represented). Labels of relationships
refer to the type of the relationship. Semantic networks are the most general form of knowledge
representation, hence, in general, all other types of knowledge representation can be encoded as a
semantic network.

The term ontology is used with different meanings in different contexts. A typical distinction
in literature [170] is Ontology (with uppercase initial) in a philosophical sense that refers to the
subject of existence and the nature and structure of things, and ontology (countable noun, an
ontology or multiple ontologies) in a computational sense that refers to an artifact of consensual
knowledge. The most common definition of an ontology was coined by Thomas Gruber: ”An
ontology is an explicit specification of a conceptualization.” [171]. A conceptualization is an ab-
stract view of reality and ”includes the objects presumed or hypothesized to exist in the world and
their interrelationships” [172]. The definition by Gruber was extended by several authors that
the specification should be formal and that the conceptualization should be shared. A formal
specification is a declarative and machine-readable representation. A shared conceptualization
expects an agreement between a number of individuals or agents. An ontology usually provides a
vocabulary to name the concepts, logical statements that describe the relationships between the
concepts, and rules that describe how new knowledge can be deduced.

2.3.2 Representation Languages

The formal specification of knowledge requires appropriate languages. In this section, we introduce
the most important open standards that enable encoding, exchange and interoperability of data

34

and knowledge. The World Wide Web Consortium14 (W3C) is the main driver for realizing the
Semantic Web idea. It has defined a number of specifications that are arranged in a layered
architecture (see Figure 2.7 for a current version), called the Semantic Web stack.

User interface and applications

Trust

Proof

C
ry

p
to

g
ra

p
h
y

Unifying Logic

Querying:

SPARQL

Ontologies:
OWL

Rules:
RIF/SWRL

Taxonomies: RDFS

Data interchange: RDF

Syntax: XML

Identifiers: URI Character Set: UNICODE

Figure 2.7: The Semantic Web stack from Wikipedia Commons15

The Semantic Web stack is based on existing web technologies, namely Unicode, URIs, and
XML languages. Unicode is a standard for encoding and representing characters and text of
different writing systems. Universal Resource Identifier (URI)16 allow to specify globally
unique names for resources. URI is the more general definition of the historically separated URL
(the address where a resource is located) and URN (the unique name of a resource). Most of the
Semantic Web languages rely on the Extensible Markup Language (XML)17 to syntactically
encode (and serialize) data in a structured way. The main concept of XML is the markup of content
with tags that can have attributes. XML allows to use arbitrary tags, there is no fixed vocabulary.
Consequently, XML can be used to define other markup languages. A fixed vocabulary for XML
documents can be specified using an XML Schema. It defines allowed tag names, attribute
names and how they can be nested and used. Using appropriate parsers, the well-formedness of
an XML document can be validated against its schema.

The most important standard of the Semantic Web stack is the Resource Description
Framework (RDF)18 that extends existing web languages. RDF has its origins in the metadata
community, hence the main intention was the description of additional data for documents and
other data:

”RDF as a W3C recommendation provides a data model for annotations in the Se-
mantic Web. [...] RDF annotates Web resources in terms of named properties.” [167]

Annotations are realized as RDF statements in the form of subject predicate object (RDF
triples). The subject is a web resource about which a statement is made. The predicate (often
called property) describes the kind of relationship. The object is either another web resource or a
data value (usually called literal). Subjects, predicates and objects have to be named with URIs
except for literal values and blank nodes (anonymous resources, only valid within a document).

14https://www.w3.org/
15Picture obtained from https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
16https://www.w3.org/Addressing/URL/URI_Overview.html
17https://www.w3.org/XML/
18https://www.w3.org/standards/techs/rdf

35

https://www.w3.org/
https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
https://www.w3.org/Addressing/URL/URI_Overview.html
https://www.w3.org/XML/
https://www.w3.org/standards/techs/rdf

RDF is a graph data model, hence, a set of triples forms a directed labeled graph. Figure 2.8
shows such a graph and the corresponding RDF triples. The example is taken from the DBpedia
knowledge base19. It encodes three facts about the web resources of Tim Berners-Lee and London
and demonstrates the linking of web resources and the annotation of web resources with named
properties and their values.

http://dbpedia.org/resource/

Tim_Berners-Lee

http://dbpedia.org/resource/

London

http://dbpedia.org/ontology/birthPlace

http://dbpedia.org/ontology/birthDate

1955-06-08

http://dbpedia.org/ontology/areaTotal

1572000000.0

http://dbpedia.org/resource/Tim_Berners-Lee

http://dbpedia.org/resource/Tim_Berners-Lee

http://dbpedia.org/resource/London

http://dbpedia.org/ontology/birthPlace

http://dbpedia.org/ontology/birthDate

http://dbpedia.org/ontology/areaTotal

http://dbpedia.org/resource/London

1955-06-08

1572000000.0

SUBJECT PREDICATE OBJECT

Figure 2.8: Examples of RDF statements in triple syntax and the corresponding RDF graph

The RDF data model itself does not yet provide meaning for web resources, but the anno-
tations point to resources under which pre-agreed knowledge is encoded in terms of ontologies
or other knowledge representations (see previous section). Nevertheless, URIs can be introduced
on demand, in case vocabularies for certain fields are not yet available. In order to build new
vocabularies the Semantic Web stack offers the RDF Schema (RDFS)20 language. RDFS al-
lows the assignment of types (the kinds of things) to resources. These types are defined with the
help of RDFS classes. The distinction between classes (a set of resources that share the same
characteristics) and individuals (often called instances) allows the specification of terminological
schema knowledge.

”RDFS [...] does not introduce a topic-specific vocabulary for particular application
domains [...]. Rather, the intention of RDFS is to provide generic language constructs
by means of which a user-defined vocabulary can be semantically characterized.” [165]

This semantic characterization is achieved by describing properties of the vocabulary terms that
apply in a domain of interest. Figure 2.9 shows an example of a class definition and associated
properties as graph representation, including the corresponding triples using a prefix notation
(name spaces). It defines a Place class and declares that the individual London belongs to that
class using the type relationship. The example also defines the property areaTotal, that was used
in the previous example. It is valid for all instances of Place (domain) and can hold Double
values (range). The definition includes a textual name area total (m2) for the property. It seems
to indicate that the measurement unit is square meters, but this textual description cannot be
evaluated by machines without any further datatype definitions. Other important relationships
of RDFS are the subClassOf and subPropertyOf properties to model subsumption hierarchies
between classes and properties, respectively. As it can be seen in the example, RDFS statements
are encoded as simple RDF triples. Thus, they constitute valid RDF documents. Vocabularies
defined with RDFS are usually called lightweight ontologies [165]. On the one hand, they usually
constitute taxonomies with simple binary property definitions. On the other hand, RDFS has
limited expressiveness, e.g., it is not possible to model equivalence, negation, property restrictions,
and cardinalities.

19http://dbpedia.org/ – Triples were retrieved on May 9, 2019
20https://www.w3.org/TR/rdf-schema/

36

http://dbpedia.org/
https://www.w3.org/TR/rdf-schema/

dbr:London

dbo:Place

rdf:type

SUBJECT PREDICATE OBJECT

rdfs:Class

rdf:type

dbo:areaTotal

rdf:Property

rdf:type

area total (m2)

rdfs:label
rdfs:domain

RDF(S)

Language

Schema

Level

Instance

Level

dbr:London

dbo:Place

dbo:areaTotal

dbo:areaTotal

dbo:areaTotal

dbo:areaTotal

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dbo: <http://dbpedia.org/ontology/>.

@prefix dbr: <http://dbpedia.org/resource/>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

xsd:double

rdfs:range

rdf:type

rdf:type

rdf:type

rdfs:domain

rdfs:range

rdfs:label

dbo:Place

rdfs:Class

rdf:Property

dbo:Place

xsd:double

„area total (m2)“

Figure 2.9: Examples of class and property definitions using RDF Schema

The Web Ontology Language (OWL)21 builds upon RDF and RDFS and provides more
expressive power to model complex knowledge and relationships. OWL has a long history in the
area of artificial intelligence. It emerged from the DAML+OIL languages [173] and became a
W3C recommendation for the modeling of ontologies in 2004. OWL is based on formal logic (the
language is mapped to a description logic [167]) to enable the derivation of implicit knowledge,
called reasoning. The development of OWL always dealt with the trade-off between expressive
power and efficient reasoning support (the more complex a language is, the more computationally
inefficient the reasoning becomes). For that reason OWL version 1 comprises three different
dialects: OWL Lite, OWL DL, and OWL Full.

OWL Full provides maximum expressiveness with no syntactic restrictions and allows combina-
tion of language primitives of OWL, RDF, and RDFS. It is interpreted with RDF-based semantics,
hence, OWL Full is an undecidable language. That means, there are no guarantees that reasoning
computation will end in finite time.

OWL DL is the description logic equivalent and still offers the complete language features. In
order to guarantee decidability with NEXPTIME complexity it restricts the usage of the constructs
from OWL and RDF (e.g., no class membership in other classes, and restrictions of functional and
transitive properties) and uses the direct semantics of OWL.

OWL Lite is a reduced subset of OWL DL, thus, also a decidable language, which reduces
worst-case computational complexity to EXPTIME. For example, it does not provide disjoint or
complement constructs, and restricts cardinality to be either 0 or 1.

The most important elements of OWL are classes, individuals, datatype properties, object
properties, property restrictions, and special properties (e.g., functional, transitive). Every OWL
ontology comes with a header that contains metadata about the ontology, such as namespaces,
version and author information. Figure 2.10 shows an example ontology definition using OWL
together with its RDF/XML representation in Listing 2.1. The ontology contains four class def-
initions, namely Person, Student, Professor, and FacultyMember. Professor is a subclasss of Fac-
ultyMember and Student is defined as disjoint with Professor. There is one object property
hasAffiliation valid for FacultyMember. The ontology contains two individuals, an instance of
Professor (ProfHaraldSack) and an instance of Person (HaraldSack). Both are connected with the
sameAs-relationship.

21https://www.w3.org/OWL/

37

https://www.w3.org/OWL/

ProfHaraldSack

Professor

rdf:type

owl:Class

FacultyMember

rdfs:subClassOf

rdf:type

Student

owl:disjointWith

rdf:type

owl:Named

Individual

rdf:type

owl:Object

Property

hasAffiliation

rdf:type

HaraldSack

Person

rdf:type

owl:sameAs

rdf:type

rdfs:domain

Figure 2.10: Examples of typical ontology definition statements with OWL. Examples partially
taken from [165]

1 <rd f :RDF xmlns=”http : //www. example . org /”
2 xmlns : owl=”http : //www.w3 . org /2002/07/ owl#”
3 xmlns : dc=”http : // pur l . org /dc/ e lements /1 .1/”
4 xmlns : rd f=”http : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
5 xmlns : rd f s=”http : //www.w3 . org /2000/01/ rdf−schema#”>
6 <owl : Ontology rd f : about=””>
7 <r d f s : l ab e l>Example Ontology</r d f s : l ab e l>
8 <dc : c reator>Henning Agt−Rickauer</dc : c reator>
9 </owl : Ontology>

10 <owl : Class rd f : about=”FacultyMember” />
11 <owl : Class rd f : about=”Pro f e s so r”>
12 <r d f s : subClassOf rd f : r e sou r c e=”FacultyMember” />
13 </owl : Class>
14 <owl : Class rd f : about=”Student”>
15 <owl : d i s j o i n tWi th rd f : r e sou r c e=”Pro f e s so r ” />
16 </owl : Class>
17 <owl : Class rd f : about=”Person” />
18 <owl : ObjectProperty rd f : about=”ha sA f f i l i a t i o n”>
19 <r d f s : domain rd f : r e sou r c e=”FacultyMember” />
20 </owl : ObjectProperty>
21 <owl : NamedIndividual rd f : about=”ProfHaraldSack”>
22 <rd f : type rd f : r e sou r c e=”Pro f e s so r ”/>
23 </owl : NamedIndividual>
24 <owl : NamedIndividual rd f : about=”HaraldSack”>
25 <rd f : type rd f : r e sou r c e=”Person”/>
26 <owl : sameAs rd f : r e sou r c e=”ProfHaraldSack” />
27 </owl : NamedIndividual>
28 </rd f :RDF>

Listing 2.1: Corresponding RDF/XML representation of the OWL example. Examples partially
taken from [165]

OWL 2 has become a W3C standard22 in 2009. It is backward-compatible to OWL 1, that
means OWL 1 ontologies expressed with RDF syntax are valid OWL 2 ontologies. OWL 2 comes
with two types of dialects: OWL 2 Full and OWL 2 DL, which correspond to the OWL 1 dialects.
Instead of OWL Lite OWL 2 profiles are available. There are three profiles23: OWL 2 EL, OWL
2 QL, and OWL 2 RL. OWL 2 EL is designed for very large ontologies with complex structures
and guarantees polynomial time (PTIME) for reasoning on and querying of schemata and data
with respect to the size of the ontology. OWL 2 QL was developed to achieve interoperability with
relational database management systems with the goal of querying large volumes of instance data
in LOGSPACE time. The expressive power allows to model main features of ER and UML class
models. Finally, OWL 2 RL is designed for applications that require scalable reasoning using rule-
based technologies. Implementations of this profile operate with RDF triples and can process any
kind of OWL 2 ontology. It guarantees polynomial time reasoning, but only for correct answers
(sound reasoning) that may not be complete.

22https://www.w3.org/TR/owl2-overview/
23https://www.w3.org/TR/owl2-profiles/

38

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-profiles/

Other new features of OWL 2 are: A functional syntax and an updated Manchester syntax, syn-
tactic improvements to reduce awkward expressions of certain constructs in OWL 1 (e.g., disjoint
union, negative assertions), new property features (e.g., cardinality restrictions, (ir)reflexive and
asymmetric object properties, keys), extended datatype definitions and restrictions, metamodeling
via punning, and the support of IRIs.

In the remainder of this section we will only provide a very brief overview about the rest of the
Semantic Web stack (cf., Figure 2.7), except for SPARQL, which is introduced in more detail in
the next section. A family of languages in the stack refers to rules. ”A rule could be any statement
which says that a certain conclusion must be valid whenever a certain premise is satisfied” [165].
Rules are a supplement to OWL and RDFS to express knowledge and conditions that cannot be
formulated with these languages. Rules are mainly based on first order logic (FOL). The two most
widely known rule formalisms for Semantic Web are the Rule Interchange Format (RIF)24 and
the Semantic Web Rule Language (SWRL)25. RIF is a specification of a format for interchange
of rules between different rule-based systems (e.g., FLORA-2, KAON2, Prolog) on the Semantic
Web. SWRL is a combination of OWL DL and RuleML (Rule Markup Language, an initiative to
standardize inference rules). From a semantics point of view, it combines description logic with
Datalog rules. SWRL allows to express rules in terms of OWL classes, properties, and individuals.
That means, symbols in rules can be OWL identifiers.

The ”Unifying Logic” layer in the Semantic Web stack refers to the goal of combining the lower
layers in a common language to execute queries and evaluate rules. The objectives of the Proof
and Trust layers are to provide a mechanism for validating the correctness of information and
the source of information. Finally, the Cryptography layer refers to technologies, such as secure
protocols, identity verification, and access control, similar to those available on the common Web.

2.3.3 Knowledge Management

In this section we introduce concepts, languages and tools for storage, retrieval and management
of RDF/OWL data and ontologies. The storage of RDF data deals with the preservation of
RDF documents, triples and schema information. The retrieval of RDF data is responsible for
efficient access to the stored RDF data and the possibility to query it according to desired aspects.
Management includes services built on top of the storage and retrieval system, such as content
preparation and reasoning.

”An RDF data store is a special database system built for the storage and retrieval of RDF
statements.” [174]. RDF data store, RDF store and triple store are often used synonymously. A
triple store usually follows a layered architecture and consists of a repository that physically
stores the RDF data in files, databases, or main memory. Access to the repository is encapsulated
with well-defined generic interfaces, so that it is possible to replace the repository engine. The
data model of RDF and RDF schema requires either to transform the RDF graph structure into
appropriate representations (e.g., database tables) or to directly store the data as a graph (e.g.,
in a node-edge or in an object-relational representation). Apart from the storage functionality,
an RDF store offers APIs to add and remove RDF statements, export and import data, and
interfaces for administration. State of the art RDF stores are: 4store26, Blazegraph27, Fuseki28,
and Virtuoso29.

The second most important functionality of a triple store is a query component that allows
to retrieve and filter RDF statements. In general, a triple store can implement multiple query
interfaces to offer access to the storage layer with multiple query languages (e.g., RQL, RDQL,
SPARQL). As SPARQL became a W3C recommendation in 2008, this query language is the
standard access method to stored RDF data for most of the triple stores. SPARQL allows to
extract values and (partial) statements from RDF graphs. It is also capable to extract RDF

24https://www.w3.org/TR/rif-overview/
25https://www.w3.org/Submission/SWRL/
26https://github.com/4store/4store
27https://www.blazegraph.com/
28https://jena.apache.org/documentation/fuseki2/
29https://virtuoso.openlinksw.com/

39

https://www.w3.org/TR/rif-overview/
https://www.w3.org/Submission/SWRL/
https://github.com/4store/4store
https://www.blazegraph.com/
https://jena.apache.org/documentation/fuseki2/
https://virtuoso.openlinksw.com/

subgraphs, to construct new RDF graphs [142], to perform joins of separate RDF graphs, and to
transform instances based on one vocabulary to another.

A SPARQL query is composed of the following parts: An optional prefix declaration for
abbreviating URIs (PREFIX), a mandatory query result clause (SELECT), an optional dataset
clause (FROM), a mandatory query pattern (WHERE), and one or more optional query modifiers
(e.g., ORDER BY, GROUP BY). Figure 2.11 shows a query example using the mandatory SE-
LECT and WHERE clauses. The dataset is an excerpt of the English DBpedia containing three
persons and their birth places. The query asks for nodes in the graph that have a dbo:Person type
and a link to dbr:Berlin via the dbo:birthPlace property. The query contains one variable and two
triple patterns, one for the type relationship and one for the birth place relationship. They match
all RDF statements that have the same structure. The result set in turtle notation contains the
two matching persons that were born in Berlin.

dbo:Person

dbr:Wolfgang_

Joop

rdf:type

dbr:Marlene_

Dietrich

dbr:Walter_

Gropius

rdf:type

dbo:birthPlace

(a) RDF dataset

(c) Triple patterns

(b) SPARQL query

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?person

WHERE {

?person rdf:type dbo:Person .

?person dbo:birthPlace dbr:Berlin .

}

dbr:Berlin dbr:Potsdam

dbo:birthPlace

dbo:birthPlace

?persondbo:Person

rdf:type

dbr:Berlin

dbo:birthPlace

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix res: <http://www.w3.org/2005/sparql-results#> .

_:ResultSet2053 rdf:type res:ResultSet .

_:ResultSet2053 res:resultVariable "person" .

_:ResultSet2053 res:solution _:ResultSet2053r0 .

_:ResultSet2053r0 res:binding _:ResultSet2053r0c0 .

_:ResultSet2053r0c0 res:variable "person" .

_:ResultSet2053r0c0 res:value dbr:Marlene_Dietrich .

_:ResultSet2053 res:solution _:ResultSet2053r1 .

_:ResultSet2053r1 res:binding _:ResultSet2053r1c0 .

_:ResultSet2053r1c0 res:variable "person" .

_:ResultSet2053r1c0 res:value dbr:Walter_Gropius .

(d) SPARQL result set

Figure 2.11: Examples of an RDF dataset, a SPARQL query, the corresponding triple pattern,
and the result set

A SPARQL endpoint is an interface to the RDF store that accepts queries and returns result
sets, either for requests from humans or from applications [174]. It implements the SPARQL
protocol30 to process SPARQL queries submitted using HTTP, to parse input formats, and to
return results in the appropriate formats (e.g., tables in XML or HTML format). A SPARQL
endpoint usually offers a web interface for users to execute queries and browse results. Since
version 1.1 the SPARQL query language not only supports the retrieval of RDF data but also
allows to add/delete triples to/from the RDF store. The query syntax was extended by optional
INSERT and DELETE clauses that contain the respective RDF statements.

An RDF store usually incorporates an inference engine. The task of an inference engine is
the deduction of additional facts that are not explicitly defined in the existing knowledge base. A
typical use case for RDF data is the application of RDF(S) entailment rules31 to the stored data.
The most widely used entailment rules are the inference of the transitive closure for subClassOf
and subPropertyOf relationships and the inference of class memberships using properties and their
domain/range restrictions [167]. The two most popular methods to perform the deduction are:
Inference in advance using forward-chaining (starting from known facts and applying rules until
a goal is reached) and inference at query runtime using backward-chaining (starting from a list
of goals and checking whether there are facts available that support the goals) [175]. Besides
inference engines for RDF data there are several well developed reasoners (e.g., FaCT++32,

30https://www.w3.org/TR/sparql11-protocol/
31https://www.w3.org/TR/rdf11-mt/
32http://owl.cs.manchester.ac.uk/tools/fact/

40

https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/rdf11-mt/
http://owl.cs.manchester.ac.uk/tools/fact/

Racer33, Pellet34) for decidable description logic in order to perform deduction on OWL ontologies.
Most RDF stores and ontology tools integrate one or more of these reasoners.

There exist several ontology engineering tools that support the development of ontologies.
They offer graphical user interfaces for editing, browsing, documenting, and visualizing ontologies,
as well as export/import features for common languages and formats. Protégé35 is the most
popular ontology editor. It was developed by the Stanford Center for Biomedical Informatics and is
a free and open-source tool. Protégé has been used for knowledge acquisition and domain ontology
building for many years [167]. With its plug-in architecture and customizable user interface it can
be easily tailored to specific needs of various ontology development tasks. Other popular ontology
engineering tools are: NeOn toolkit36, OWLGrEd37, TopBraid Composer38 (commercial tool),
and OntoStudio39 (commercial tool).

2.3.4 Linked Data

In the early years of the Semantic Web idea, publication of semantic data often resulted in large
isolated RDF dumps that were put on the Web for download [176] (e.g., the OpenCyc common
sense ontology [112], the GALEN medical terminology, the WordNet lexical database [108]). Al-
though these initiatives were very valuable and still belong to the most frequently used resources in
the Semantic Web and computational linguistics community, they could only be processed offline,
they were not interlinked, and it was difficult to retrieve single elements or excerpts of the RDF
documents.

Friend of a Friend (FOAF)40 was the first project that applied interconnection of RDF docu-
ments by linking FOAF profiles to other friends’ profiles using a knows relationship. The project
was the first step towards a Web of Linked Data. Publication of more and more isolated datasets
continued, so that Tim Berners-Lee proposed the Linked Data principles [177], a guideline of
how to publish Linked Data ”in such a way that it is machine readable, its meaning is explicitly
defined, it is linked to other external datasets, and it can in turn be linked to from external datasets
as well.” [174]. Over time the principles evolved to more detailed specifications (e.g., how to pub-
lish vocabularies [178]). The four Linked Data principles, which enable discovering and consuming
semantic data on the web by both humans and machines, are [177]:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF*,
SPARQL).

4. Include links to other URIs, so that they can discover more things.

The first principle refers to RDF’s basic rule of using Unique Identifiers for everything
published as Linked Data. The second principle is the so-called Dereferencing, the ability to
access the URI over HTTP using globally accessible domains. The third principle, when accessing
a URI with a client, recommends providing structured RDF data to return additional information
about an object identified by a URI. This includesContent Negotiation, the process of providing
different representations of the same RDF data depending on the request. For the same URI, for
example, a user using a conventional Web browser receives an HTML page rendered from the RDF
data, and a machine using an RDF client receives an RDF document in exactly the requested
format. The latter principle advocates the use of Interlinking and allows us to examine more
information in other datasets and to avoid duplicate information (for example, reusing a type of
a dataset in another dataset or stating that two things in different datasets are the same).

33https://www.ifis.uni-luebeck.de/~moeller/racer/
34https://github.com/stardog-union/pellet/
35https://protege.stanford.edu/
36http://www.neon-toolkit.org/
37http://owlgred.lumii.lv/
38https://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
39http://www.semafora-systems.com/en/products/ontostudio/
40http://www.foaf-project.org/

41

https://www.ifis.uni-luebeck.de/~moeller/racer/
https://github.com/stardog-union/pellet/
https://protege.stanford.edu/
http://www.neon-toolkit.org/
http://owlgred.lumii.lv/
https://www.topquadrant.com/tools/modeling-topbraid-composer-standard-edition/
http://www.semafora-systems.com/en/products/ontostudio/
http://www.foaf-project.org/

Publishing Linked Data following these principles has created a web of data that has grown
very rapidly within the last 10 years. This has been reinforced by several efforts to automatically
create large knowledge bases using semi-structured data and textual documents on the Web.
One of the first successful projects is DBpedia [103]. ”DBpedia is a crowd-sourced community
effort to extract structured content from the information created in various Wikimedia projects.
This structured information resembles an open knowledge graph (OKG) which is available for
everyone on the Web.”41. DBpedia extracts existing structured information fromWikipedia pages.
Extracted information is converted into RDF documents that form a large RDF record. The
dataset is provided as Linked Data using an instance of Virtuoso Server42 and can be queried
using a public SPARQL endpoint43.

Because of its popularity, DBpedia has become the focal point of the Linked Open Data
Cloud44. The LOD Cloud is a community project that collects metadata of Linked Data datasets
and provides analysis of the content, its connections, and interactive entry points into the datasets.
A visualization of the datasets is shown in Figure 2.12. It contains more than 1200 records45, which
are divided into different domains.

Figure 2.12: Linked Open Data Cloud diagram as of March 2019, by John P. McCrae, from
http://lod-cloud.net/

41https://wiki.dbpedia.org/about/
42https://virtuoso.openlinksw.com/
43https://dbpedia.org/sparql/
44https://lod-cloud.net/
45As of March 29, 2019

42

https://wiki.dbpedia.org/about/
https://virtuoso.openlinksw.com/
https://dbpedia.org/sparql/
https://lod-cloud.net/

2.4 Foundations of Information Extraction

Information extraction is the process of creating structured facts from unstructured data sources [114].
This thesis utilizes methods from this field to create new sources of knowledge. Information extrac-
tion itself is associated with several other research areas, such as: computational linguistics [115],
artificial intelligence and information retrieval [116]. This section introduces the most important
terms, concepts, and methods of information extraction that are relevant to this thesis. Marie-
Francine Moens [116] defines information extraction as follows:

Information extraction is the identification, and consequent or concurrent classification
and structuring into semantic classes, of specific information found in unstructured
data sources, such as natural language text, making the information more suitable for
information processing tasks.

Unstructured data includes all types of text documents and media files (audio, video, image)
that need to be processed to make the contained information interpretable. Structuring into
semantic classes means that the raw information contained in the linguistic structure of sentences
and their formation is organized into several linguistic models at different levels of abstraction,
or the visual and audible content is classified accordingly. These models allow further analysis at
syntactic, semantic, and pragmatic levels to interpret the intended meaning.

2.4.1 Basic Computational Linguistics Methods

Information extraction, in most cases, involves natural language processing, as the majority of
unstructured data is text [179]. Several computational linguistics methods have to be applied to
access the information that is expressed by natural language text. In the following we describe
the most important linguistic preprocessing techniques.

The first step of processing a natural language document or corpus is checking the data for
corrupt files, checking the character encoding and if necessary, the removal of markup such as XML
or HTML tags (boilerplate detection) in order to obtain the raw text for further processing.
The division of text into sections or paragraphs is called text segmentation and performed in
case the data or the extraction task requires it. The content of a corpus may originate from
arbitrary sources, such as the Web, hence a language identification may be required.

Tokenization splits the text into words, numbers, punctuation, so-called tokens. In most
European languages tokens are usually separated by white space (space-delimited languages).
Unsegmented languages (e.g., Chinese, Japanese) require additional dictionaries or morphological
analysis. One of the main tasks of tokenization is to correctly identify whether punctuation or
hyphenation should be considered as part of the word or not (e.g., periods for abbreviations,
periods as decimal point, and periods to mark the end of the sentence). Closely connected to
tokenization is the preprocessing step sentence segmentation, ”the process of determining the
longer processing units consisting of one or more words” [180]. Figure 2.13 shows an example
piece of text that is tokenized and segmented46.

Lexical analysis operates on word level and deals with decomposing words into their parts,
morphological processing, and eliminating word variants (for example, {organizes, organizing,
organized} → organize). Morphological variants are subsumed by their lemma, the invariant
root form of a word. While lemmatization is the more complex reduction of inflectional forms,
stemming is a pure heuristic process that cuts off the end of words [181]. These procedures are
often used in the context of text normalization, which in general has the goal to turn tokens
and text into a canonical form (e.g., lowercasing, expanding abbreviations, removing stopwords).

A very important step in natural language processing is part of speech tagging (POS tag-
ging). It operates on sentence level and determines the corresponding lexical category (e.g., noun,
adjective) for each token (words or tokens are tagged, respectively). The sets of possible tags vary
a lot between different POS tagging systems and languages. In general there are three universal

46The sentence was processed with http://text-processing.com/demo/

43

http://text-processing.com/demo/

Figure 2.13: Example text from Wikipedia’s page on Microsoft and its segmented and tokenized
form, processed with the Treebank Word Tokenizer of the Python NLTK

primary parts of speech: noun, verb, and adjective [180]. Further categories are subcategories
of the primary word classes that reflect tense or number and categories of secondary importance
(e.g., determiner, conjunction). The most important tagsets are: Penn Treebank and Wall Street
Journal (WSJ) tagset (48 tags) [182] and the Brown Corpus tags (87 tags)47 for the English
language as well as the STTS tagset and modifications (54 tags)48 for German. In 2012, Petrov
et al. [183] proposed a universal tagset consisting of only 12 categories covering the most frequent
part of speech for 22 languages. Figure 2.14 shows the previous example text tagged with the
Stanford Tagger [184] using the Penn Treebank tagset compared to tags from the Google Cloud
Natural Language Services49. The main challenges in POS tagging are ambiguous words that may
have different parts of speech depending on the context or their usage (e.g., patient as an adjective
and patient as a noun), and how to process unknown words that cannot be handled by handcrafted
rules or were not present in the training data for machine learning based models. Nevertheless,
POS tagging is a very well-studied field of research. State-of-the-art taggers achieve an accuracy
of about 97%.

On April 25, 2014, Microsoft acquired Nokia Devices and Services for $7.2 billion. This new subsidiary was renamed Microsoft Mobile Oy. In May

2016, the company announced it was laying off 1,850 workers, and taking an impairment and restructuring charge of $950 million.

On/IN April/NNP 25/CD ,/, 2014/CD ,/, Microsoft/NNP acquired/VBD Nokia/NNP Devices/NNPS and/CC

Services/NNPS for/IN $/$ 7.2/CD billion/CD ./. This/DT new/JJ subsidiary/NN was/VBD renamed/VBN Microsoft/NNP

Mobile/NNPOy/NNP ./. In/IN May/NNP 2016/CD ,/, the/DT company/NN announced/VBD it/PRP was/VBD

laying/VBG off/RP 1,850/CD workers/NNS ,/, and/CC taking/VBG an/DT impairment/NN and/CC restructuring/NN

charge/NN of/IN $/$ 950/CD million/CD ./.

(a) Original Text

(b) Tagged with Stanford Tagger using Penn Treebank Tagset

On/ADP April/NOUN 25/NUM ,/PUNCT 2014/NUM ,/PUNCT Microsoft/NOUN acquired/VERB Nokia/NOUN Devices/NOUN and/CONJ

Services/NOUN for/ADP $7.2/NUM billion/NUM ./PUNCT This/DET new/ADJ subsidiary/NOUN was/VERB renamed/VERB Microsoft/NOUN

Mobile/NOUNOy/NOUN ./PUNCT In/ADP May/NOUN 2016/NUM ,/PUNCT the/DET company/NOUN announced/VERB it/PRON was/VERB

laying/VERB off/PRT 1,850/NUM workers/NOUN ,/PUNCT and/CONJ taking/VERB an/DET impairment/NOUN and/CONJ restructuring/NOUN

charge/NOUN of/ADP $950/NUM million/NUM ./PUNCT

(c) Tagged with Google Cloud Natural Language Services using the Universal Tagset

Figure 2.14: Comparison of Stanford/Penn Treebank and Google part-of-speech tags for a sample
text

In a linguistic processing pipeline, the POS tags are usually the starting point for syntactic
analysis. Syntactic analysis deals with the grammatical structure of a sentence by determining
relations between words. In general, there are two main approaches to syntactic natural language
analysis: grammar-driven parsing and statistical parsing [180]. The former is mainly based
on context-free grammars and their extensions (e.g., Head-driven Phrase-Structure Grammars
(HPSG)), and tries to match a grammar against a given sentence. Statistical approaches also use

47http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/tags.html
48http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/GermanTagsets.en.html
49https://cloud.google.com/natural-language/?hl=de

44

http://www.helsinki.fi/varieng/CoRD/corpora/BROWN/tags.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/GermanTagsets.en.html
https://cloud.google.com/natural-language/?hl=de

grammars but try to induce grammars based on probabilistic models (e.g., Probabilistic Context-
Free Grammars (PCFG) are often used). Output of parsing is either a hierarchical structure of the
input sentence, called a syntax tree or constituent structure, which is recursive decomposition
of a sentence (e.g., consisting of noun phrases, verb phrases, etc.), or a dependency structure,
which establishes binary relationships between words, and labels words according to their func-
tional role (e.g., subject, object). Figure 2.15 shows such a dependency structure for a sample
sentence (orange: functional roles, green: dependencies).

Figure 2.15: Dependency structure for a sample sentence obtained from the Google Cloud Natural
Language Services

The methods described above are among deep parsing systems that are able to capture the
full grammatical structure of sentences including long-distance relationships. As the application of
these grammars is computationally intensive, they may be insufficient for large amounts of data.
Instead, shallow parsing is often used, a rudimentary syntactic analysis, also called chunking. It
tries to identify boundaries between basic elements by separating the sentence into chunks (usually
phrases without any roles).

Finally, when it comes to analyzing larger text collections, probabilistic language models
are often used to examine sequences of words and their context. These language models are mainly
used to predict a possible next word for a given sequence of words. This is a fundamental task in
speech and handwriting recognition, and it is also used for spelling correction. These models are
mainly based on N-gram analysis. In the context of corpus analysis, an N-gram is a sequence of
n consecutive words. The frequency of an N-gram is determined by counting all its occurrences
in a text collection. If for example a trigram model is used, all occurrences of three consecutive
words are counted in a corpus and for a 2-word input sequence the probability of the third word
can be estimated using, for example, a maximum likelihood estimation [185]. In practice, it is
common to use trigram models, sometimes 4-gram or 5-gram models, but the longer the context
the more sparse the data becomes (e.g., simply counting 6-grams will result in fewer counts and
too many distinct N-grams).

2.4.2 Term Extraction

In this section we introduce methods for extracting interesting terms from natural language text.
The notion of term is used quite differently in different areas of research. In the context of
this thesis we refer to a definition by the Merriam Webster dictionary50, which says ”a word or
expression that has a precise meaning in some uses or is peculiar to a science, art, profession, or
subject”. Particularly, we want to highlight that ”term” refers to both words and phrases. By
”interesting terms” is meant that these terms carry a meaning that stands out from other terms.
There are a number of concepts that closely relate to the notion of term, such as key terms,
collocations and multiword expressions (MWE), which will be described in more detail below.

”Key terms [...] are sets of significant terms in a text document that give high-level description
of its content for readers.” [186]. Key term extraction or keyword extraction has its roots in
information retrieval to select keywords in document collections that are used to retrieve the

50https://www.merriam-webster.com/dictionary/term

45

https://www.merriam-webster.com/dictionary/term

most relevant documents according to a keyword query. The baseline model in this area is TF-
IDF [187], a composite weight of the term frequency, the occurrences of a term in a document, and
the inverse document frequency, the logarithm of the total number of documents in a collection
divided by the document frequency (in how many documents of the collection the term occurred).
As this model is not very robust, several extensions of it exist to improve finding and ranking
candidate terms. They combine other weights, such as distance/position of a term in a document or
keyphrase-frequency. Other approaches use external sources, such as Wikipedia, to determine links
between candidate terms and their importance. Several methods exist that build a graph model of
the document, and use graph-based ranking algorithms [188] or community detection [186]. If these
methods are applied in a domain-specific context, it is often called the extraction of technical
terminology.

”A collocation is a word combination whose semantic and/or syntactic properties cannot be
fully predicted from those of its components, and which therefore has to be listed in a lexicon.” [189].
This refers to the limited compositionality of collocations (some meaning is added). They are often
idiomatic (but they need not be) or have a specialized meaning, thus these fixed expressions are
used more frequently than other combinations. Collocations include a broader range of combina-
tions (e.g, compounds and phrasal verbs), for example disk drive may also be a key term, but the
collocation make up will most probably not be regarded as a key term (which are nouns and noun
phrases, normally). A common method to find collocations is counting sequences of two or more
adjacent words (bigrams or N-grams in general) and applying part-of-speech filters [190].

Multiword expression (MWE) is an umbrella term for several syntactic categories, to some
extent overlapping with key terms and collocations. A linguistic definition of MWE is: ”Multiword
expressions (MWEs) are lexical items that: (a) can be decomposed into multiple lexemes; and (b)
display lexical, syntactic, semantic, pragmatic and/or statistical idiomaticity” [180]. Multiple
lexemes refer to whitespace-separated expressions, hence it is common that fused words (e.g.,
kickboxing) are not considered as MWEs. While collocations do not necessarily imply idiomaticity,
it is required for multiword expressions. Idiomaticity, sometimes also called idiosyncrasy, means
that these expressions are peculiar in their use and deviate from the basic properties of their
components (e.g., bull market). They are treated as a single unit and may be a continuous or
discontinuous sequence of words. This is also a difference in comparison to collocations (usually
treated as consecutive words), but there exist research works that both analyze collocations in a
discontinuous manner and multiword expressions only in a continuous manner. The different types
of idiomaticity refer to how they are lexically or syntactically constructed (e.g., ad hoc, parts are
not in a lexicon), that there is a mismatch between the semantics of the parts and the whole (e.g.,
kick the bucket), in which situations they are used (e.g., good morning), and how often certain
expressions are used (e.g., dialect differences mail man vs. post man).

2.4.3 Fact Extraction

This section presents information extraction methods that typically build on the basic tasks of
natural language processing and the extraction of terms to derive further information contained
in the text.

A very common information extraction task is Named Entity Recognition (NER), the
process of finding ”each mention of a named entity in the text and label its type” [185]. A named
entity is a real object or an abstract object that can be referenced with a proper name (e.g., Albert
Einstein, Berlin). NER can be considered to be a special case of term extraction (locating the
named entity), but also includes a classification task: mapping entity types to localized mentions.
Entity types are the classes that subsume named entities: people, locations, organizations, etc.
Typically, numeric expressions are also treated as named entities (for example, dates, prices).
The set of entity types depends heavily on the extraction goal and the domain. General types are
person, location, date, domain-specific classes are for example gene or protein names. Fine-grained
NER aims to resolve more specific types (e.g., politician, scientist, or film star for the type person).
State-of-the-art NER tagging systems use feature-based models (conditional random fields) [191],
neural networks (LSTM) [192], and rule-based approaches [193].

46

Closely related to NER is the task of coreference resolution, which resolves which mentions
of entities refer to the same entity. Normally, pronouns (e.g., he, it) must be associated with
the correct entity, and variations of named entities, such as descriptive noun phrases, must be
joined together (e.g., United States of America and The States). Coreference resolution attempts
to find all the referencing expressions of an antecedent and arranges them in chains. In contrast,
anaphora resolution works in the opposite direction and identifies the referring expression for a
single pronoun. Current state-of-the-art coreference resolution systems are based on clustering and
learning-to-search algorithms [194]. Figure 2.16 shows an example of NER tagging and coreference
resolution51.

Figure 2.16: Named Entity Recognition and Coreference Resolution applied to an example text
using the Stanford CoreNLP tools

Semantic role labeling, often also called thematic role labeling, ”[...] regards the assignment
of semantic roles to the (syntactic) constituents of a sentence.” [116]. If a sentence is segmented
into noun phrases and verb phrases, its task is to determine the arguments of verb phrases (pred-
icates) and to assign a proper role to them. Typical generalized thematic roles are: Agent,
Result, Source, or Goal. The sets of roles used for annotation are dependent on what external
source is used (e.g., PropBank [195], VerbNet [110], FrameNet [109]) and what kind of linguistic
theory is implemented (e.g., categorial roles vs. prototype roles). Figure 2.17 shows an example
of semantic role labeling52.

Figure 2.17: Example text enriched with semantic role labels using the SRL demo of the Cognitive
Computation Group at the University of Pennsylvania

While the previous methods enrich parts of a given sentence (e.g., words, phrases) with ad-
ditional semantic information, the task of relation extraction (RE) is to determine relations
between already identified and tagged parts. This is essentially establishing and classifying bi-
nary relationships (or in general n-ary relationships) between named entities. An extension of
relation detection is event extraction that also allocates a temporal and spatial dimension to
the extracted relationships. The supported relation types of an extraction system depend on the
extraction tasks and the domain of the target text corpus. Typically, relationships with respect
to locations (e.g., cities locatedIn), to persons (e.g., marriedTo, bornIn) and to organizations (e.g,.
subsidiaryOf, ownerOf) are detected. A common set of relations is provided by the Linguistic Data
Consortium in the Automatic Content Extraction (ACE) program53. Methods of relation extrac-

51The sentence was processed with http://nlp.stanford.edu:8080/corenlp/
52The sentence was processed with http://cogcomp.org/page/demo_view/SRL
53https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications

47

http://nlp.stanford.edu:8080/corenlp/
http://cogcomp.org/page/demo_view/SRL
https://www.ldc.upenn.edu/collaborations/past-projects/ace/annotation-tasks-and-specifications

tion can be roughly classified into rule-based approaches as well as supervised, semi-supervised
and unsupervised machine learning approaches, that will be described in the following.

Rule-based relation extraction is based on manually developed extraction rules that mainly
rely on lexico-syntactic features of sentences. The decision as to whether a particular structure rep-
resents a particular relationship type is made by explicit pattern recognition. The oldest and most
popular approach is the use of Hearst Patterns [120] to extract is-a relationships (hypernyms)
from natural language text. These patterns contain surface-level phrases (e.g., such as, or), punc-
tuation marks, placeholders for named entities, and elements of regular expressions. For example,
the pattern ”NP0, such as NP1, NP2, ..., (and |or) NPn” extracts hypernymic relationships
(programming language→{Java,Python}) from an example sentence fragment ”If you are used to
a programming language, such as Java or Python”. The main advantage of rule development is
that, because of their declarative nature [193], these patterns are easy for humans to understand,
and the effects of change are directly visible (compared to a machine learning model, which re-
quires a training phase and an extraction phase). This is also confirmed by recent studies showing
that rule-based systems are still prevalent in industry [196]. In contrast, rule-based extractions
have difficulty with scalability, namely the high costs of rule development and the manageability of
large sets of rules. This is mainly addressed by pattern learning approaches. Nevertheless, it has
recently been shown that especially for hypernym detection rule-based approaches still outperform
distributional methods [197].

Supervised relation extraction ”requires labelled data where each pair of entity mentions
is labelled with one of the pre-defined relation types.” [198]. Supervised RE is based on lexical,
syntactic and semantic features that are extracted from the labeled training data. These features
are used to train machine learning algorithms for classification that assign the most probable
relationship type to respective entity mentions. Features in this case are observed phenomena in
the original sentences. These include for example word-based features (word before and after the
entities), grammatical features (phrase heads), and several semantic features (e.g., types of the
entities, part-of-speech of words dependent on the entities). For manually labeled training data
and/or manually engineered features in general, any standard classification algorithm can be
used (support-vector machines, logistic regression, etc.). The advantage of feature-based relation
extraction is that cross-validation can easily be applied to evaluate the features. The disadvantage
is that the creation of labeled training data is very costly. An overview of these kinds of systems
can be found in [199].

Semi-supervised relation extraction aims to reduce the high effort of creating labeled
training data. The first approach is to use bootstrapping algorithms [185]. In this procedure,
only a small amount of example relation instances, so-called seeds, are supplied at the beginning
(e.g., if seeking for book authors, {J. K. Rowling, Harry Potter and the Philosopher’s Stone},
{Stephen King, Misery}). Occurrences of these examples are searched in a large unlabeled corpus,
and patterns are learned from the occurrences. Newly discovered patterns are used to extract new
relation instances, and then the process is repeated. Snowball [200] was one of the first systems
implementing this principle based on Dual Iterative Pattern Relation Expansion (DIPRE).
The steps of the algorithm are shown in Figure 2.18. The main challenge of this iterative process is
the assessment of discovered patterns, because no gold standard for validation exists: ”Semantic

drift occurs when an erroneous pattern leads to the introduction of erroneous tuples, which can
then, turn, lead to the creation of problematic patterns.” [185]. To address this problem, confidence
values are estimated for new patterns and new tuples based on how many tuples a pattern finds in
the set of already extracted tuples and in the whole document collection. Also limited closed-world
knowledge (e.g., implemented in DARE [201]) is used to improve the assessment.

The second approach of semi-supervised relation extraction is called distant supervision
(DS). ”The distant supervision assumption is that if two entities participate in a relation, any
sentence that contain those two entities might express that relation.” [202]. In contrast to boot-
strapping a large number of seeds is provided to the extraction system by obtaining tuples of
already existing knowledge bases. These tuples are then used to find sentences in which they
occur, and respective patterns are extracted. The advantage over bootstrapping is that it allows
many more features to be gained. The disadvantage is that a lot of noise is introduced by finding

48

sentences just by named entity occurrences. DS has some difficulties with overlapping relations.
That means, multiple relations are valid for the same tuples (e.g., many persons were born in,
lived in, and died in the same city), and patterns learned from these examples contribute to all
relations. This is addressed by introducing negative examples [203].

Tuple

Search

Tuple

Set

Pattern

Extraction

Tuple

Extraction

Pattern

Search

Pattern

Set

Seed

Tuples

Database

Seed

Patterns

Figure 2.18: Bootstrapping principle for semi-supervised relation extraction, after Jurafsky and
Martin [185]

Unsupervised relation extraction (URE) is a line of research that aims to extract relations
and relation instances from natural language text without any human intervention. The biggest
difference to the previous methods is that URE is not restricted to a fixed set of relations. Hence,
URE can still be applied, if a knowledge base of a certain domain is not available. Most of the
approaches (e.g., [204],[205]) rely on clustering to determine sets of entity pairs that belong to
a relation type. In general, the procedure is as follows [198]. (1) Named entity recognition is
performed on the complete text corpus. (2) Pairs of co-occurring named entities, their order and
their context (intermediate and surrounding words) are recorded. (3) Context similarities are
determined, for example, by word frequencies, lexical information, and dependency structures.
(4) Hierarchical clustering is applied to the entity pairs using the similarity values. Each of the
resulting clusters represents a relation that is then labeled.

The most influential work in the area of unsupervised relation extraction isOpen Information
Extraction (OpenIE), first proposed by Banko et al. in the Textrunner system [117]. Three
phases are required to obtain a set of extractions: (1) Self-supervised learning: Because deep
parsing is not practical for large corpora, only a small sample of the corpus is fully processed first
and a set of heuristics is applied to obtain positive and negative training data fully automatically.
The training examples are used to train a Naive Bayes classifier. (2) Single-pass extraction: The
complete corpus is analyzed with noun phrase detection (chunking) and their connecting words.
Relation candidates are accepted or discarded by the aforementioned classifier. Extractions are in
the form of (Berkeley, located in, Bay Area). (3) Redundancy-based assessment: All relation tokens
are stemmed into their base form and tokens are omitted that may lead to overspecification (e.g.,
”Young scientists from many universities are studying exciting new technologies” is reduced to
”scientists are studying technologies”). Identical tuples are then merged and it is counted from how
many distinct sentences the relation was extracted. This allows to estimate a probability whether a
tuple is a correct instance of a relation. Starting with Textrunner a series of extraction systems
and methods have been developed to improve unsupervised relation extraction. This includes:
ReVerb, Ollie, RelNoun, SrlIE, and OpenIE 5.0. Mausam [206] provides an overview of
these systems.

49

2.4.4 Distributional Semantics

This section presents methods that automatically build semantic representations of words and
phrases by observing their occurrence in natural language text. ”The terms distributional, context-
theoretic, corpusbased or statistical can all be used (almost interchangeably) to qualify a rich family
of approaches to semantics that share a “usage-based” perspective on meaning, and assume that
the statistical distribution of words in context plays a key role in characterizing their semantic
behavior.” [207].

Distributional models have a long history in linguistic, cognitive and computational research
reaching back to the fifties. In his early work on discourse analysis, Zellig Harris first coined in
1954 the Distributional Hypothesis: ”the parts of a language do not occur arbitrarily relative
to each other: each element occurs in certain positions relative to certain other elements” [208].
This theory was first used in phonemic analysis and later proposed for all linguistic levels. The
famous slogan of J.R. Firth (1957) ”You shall know a word by the company it keeps” [209] shows
that with respect to words (words with similar meanings occur in similar contexts). Hindle [210]
restricted that to words having a grammatical dependency on the target words.

Vector Space Models (VSM) [211] are the most common representation of word contexts.
Context in that regard are the words in the neighborhood of a target word. The general idea of
VSM is to represent documents, phrases or words as points in space, and the distance between
these points corresponds to their semantic similarity. This geometric measurement was generalized
to capture various aspects of co-occurrence in natural language text usually with the use of vectors,
matrices, and higher-order tensors. As VSM are often called vector semantics, semantics here
refers to the meaning of a word or phrase. Semantic similarity in this context is used in a
broader sense and refers to the semantic relatedness. Two words are similar if they are near-
synonyms. Antonyms are considered highly related but not similar [185], and words having other
functional dependencies (e.g., car and gasoline) are also considered to be related but not similar.

The construction and use of vector space models is mainly concerned with four aspects: (1)Ma-
trix type – what kind of properties of the text are represented by columns and rows (e.g., a
word-document, word-context, or pair-pattern matrices). The construction usually requires some
linguistic preprocessing of the corpus under study. (2) Weighting – values in the matrices are
usually filled with frequencies and then normalized according to a certain weighting model (e.g.,
probabilities, TF-IDF, Pointwide Mutual Information (PMI)) in order to make them comparable
and to favor discriminative information content. (3) Dimensionality reduction – word matrices
usually have a huge number of columns and rows and are sparse (most values are 0). ”The goal
of dimensionality reduction is eliminate rows/columns that are highly correlated while bringing
similar things together and pushing dissimilar things apart.” [212] (e.g., through Latent Semantic
Analysis (LSA), Principal Components Analysis (PCA), or Latent Dirichlet Allocation (LDA)).
(4) Vector comparison – there are several ways of measuring the similarity of VSM’s vectors
(e.g. Cosine, Manhattan or Euclidean distance, Kullback-Leibler divergence). This often involves
sparse-matrix multiplication methods or distributed parallel computation because matrices may
not fit in memory completely [185].

bite buy drive eat get live park ride tell

bike 0 9 0 0 12 0 8 6 0

car 0 13 8 0 15 0 5 0 0

dog 0 0 0 9 10 7 0 0 1

lion 6 0 0 1 8 3 0 0 0

Figure 2.19: Example of a word-context matrix, based on [213]

Figure 2.19 shows an example of a word-context matrix of nouns and their neighbor verbs. The
rows represent the target words (word vectors), and the columns represent the context (context

50

vectors). The embedding of words into a vector space is called word embedding. The values
in the cells are the frequencies with which the words occurred together. From this simple repre-
sentation, it can already be seen that bike and car share similar contexts as well as dog and lion
(through the respective counts in the rows). No matter what type and mathematical principle is
used, vector space models can be summarized as mutual-information weighted word co-occurrence
matrices.

Vector space models are one technique of word embedding that are all based on count mod-
els. Another family of approaches that became very popular in recent years is based on neural
language models and uses predictive models to create distributional semantic models (DSM):
”Instead of counting co-occurrences, prediction DSMs are neural network algorithms that directly
create low-dimensional implicit distributional representations by learning to optimally predict the
contexts of a target word” [213]. That means the most probable set of context words is directly
learned from the input data.

The most prominent approach that boosted research in this direction is Word2Vec [214, 215].
Although there have been other approaches before, which used neural networks for language
models (e.g., feedforward NNLM [216]), Word2Vec was the first work that minimized the training
to log-linear computational complexity. This made it possible to learn vector representations using
much more data than it was possible before. Thus, the models outperformed previous work in
various word similarity tasks. Additionally, the output of neural language models are dense vector
representations that also allow for computationally efficient usage.

Learning low-dimensional word vectors (usually 50 to 600 dimensions) means that for each
observation in a large corpus the vector of the target word and the vectors of the context words
are updated to be closer in vector space and all others are updated to be less close to the vector
of the target word. Word2Vec implements two models, the first is a Continuous Bag-of-Words
(CBOW) model. This model predicts a target word based on a set of n history and n future
context words (often n = 2 is used). The order of the context words is ignored. The second
approach is named Continuous Skip-gram Model that aims at predicting the context words from
a given target word. Skip-grams allow a context with gaps. As CBOW always predicts the
most probable word, infrequent words are not well represented with this model. CBOW is more
efficient in terms of memory requirements and training time because the skip-gram model will
possibly preserve multiple relevant contexts for one target word (capturing multiple semantics,
and thus also working better with infrequent words). Skip-gram model respects the order of the
context words in the sense that closer context words will get higher weights. CBOW performs
better on large corpora, where skip-gram should be used if only smaller training data is available54.
The neural network either uses hierarchical softmax or negative sampling for the output layer,
both being computationally more efficient than previous NNLMs. The specialty about negative
sampling is that for a target word the observed context words are treated as positive examples,
and negative examples are obtained by randomly choosing words from the lexicon not co-occurring
with the target word.

Although neural language models have been treated as the holy grail for a wide range of word
similarity and classification tasks in recent years, a systematic comparison of count-based and
predictive models is still ongoing research [213, 217]. Moreover, it was recently shown, that count-
based models can still compete with predictive models or even outperform them if less training
data is available [218].

2.5 Foundations of Recommender Systems

Recommendation systems (RS) provide users with context-sensitive suggestions to support the
decision-making process [72]. Typically, an RS collects information about users and items they
interact with (such as movies, songs, products). RS help users to deal with a large amount of
available information by providing recommendations for items that may be of interest to them
(e.g., which movies to watch, which music to listen to, or which products to buy). The main

54https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ

51

https://groups.google.com/forum/#!searchin/word2vec-toolkit/c-bow/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ

goal of an RS is to predict that an item is worth recommending. ”RS make use of different
sources of information for providing users with predictions and recommendations of items. They
try to balance factors like accuracy, novelty, dispersity and stability in the recommendations” [219].
This section introduces the basic concepts and types of recommendation systems proposed in the
literature. After that, we highlight two types of RS, semantics-aware recommendation systems
and recommendation systems in software engineering (RSSE).

2.5.1 Types of Recommender Systems

Recommendation systems depend mainly on the available data used to generate recommendations,
how the data is processed (filtering), and the goal to be achieved (e.g., top-N recommendations,
scalability, precision). On the one hand, data refers to properties of the objects of interest (e.g.,
product features and customer attributes), and on the other hand to external sources such as
ratings or social information. Not surprisingly, data mining methods are common to recommender
systems [72], such as preprocessing, classification, and clustering.

The most common classification of RS is based on filtering algorithms [220]. They determine
what information is used and how it is processed to generate recommendations. These approaches
include collaborative filtering, demographic filtering, content-based filtering, hybrid filtering, as
well as constraint-based, knowledge-based, and context-sensitive systems.

Collaborative filtering (CF) ”. . .methods produce user specific recommendations of items
based on patterns of ratings or usage (e.g., purchases) without need for exogenous information
about either items or users.” [72]. Two users are considered similar if they offer similar ratings
for similar items or buy similar products. A preference for certain types of items can be obtained
automatically by analyzing the activities of the users (e.g., history of the products browsed in a
store, number of times songs are heard). The similarity between users is determined by comparing
the scores of all the items they evaluate, and the similarity between items is determined by
comparing the scores of all the users who evaluated the items. A common recommendation
algorithm for CF is k Nearest Neighbors (kNN) using standard similarity measures such as Pearson
Correlation (CORR) or Mean Squared Differences (MSD).

Content-based filtering (CBF) identifies similarities between items based on their prop-
erties (such as genre, ratings, opinions, tags) and recommends similar objects to those that a
user has interacted with in the past. CBF matches the preferences of a user profile against the
features of the items. A user profile is either manually specified as a set of interests or built from
the features of items that the user previously rated, bought, or viewed. Item characteristics are
usually retrieved as a set of keywords from product descriptions or product catalog attributes. A
typical architecture of content-based recommender systems is as follows [221]. A content analyzer
extracts information from item descriptions using standard methods of information retrieval and
creates structured element representations. A profile learner collects user feedback on items, either
through explicit evaluation of items or implicitly through user interaction with the system. Along
with the article representations, a profile is learned that represents the interests of the user. A
filtering component compares the profile with element representations and estimates the relevance
of new elements. The result is either a binary relevance judgment (relevant or not) or a continuous
representation (top-N recommendations).

Demographic filtering (CF) is based only on features of users such as age, gender, country,
and assumes that users with similar personal attributes have a similar interest in items.

Knowledge-based recommendation systems use additional knowledge of users, elements, and
recommendation criteria to improve the recommendations. Knowledge is usually coded by rules
on how user interests are satisfied by article features. Recommendations are generated by apply-
ing reasoning on user, item, and rule data. In the context of RS, the term knowledge-based is
usually associated with the encoding of explicit knowledge in the sense of logical implications,
but not with the use of external knowledge bases that contain factual knowledge, as we know
from Linked Data. In general, there are two types of knowledge-based RS: constraint-based and
case-based, both using this type of encoded knowledge. ”Case-based recommenders determine
recommendations on the basis of similarity metrics whereas constraint-based recommenders pre-

52

dominantly exploit predefined recommender knowledge bases that contain explicit rules about how
to relate customer requirements with item features.” [72].

Hybrid filtering combines the above approaches to take advantage of each strength and to
overcome the disadvantages. The cold start issue for new items in CF and for new users in CBF
is usually addressed by combining CF or CBF with demographic filtering and knowledge-based
approaches. Context-aware recommendation systems additionally use time, location, and other
sensor-based information to improve the recommendations.

2.5.2 Semantics-Aware Recommender Systems

An extension of recommender systems that was recently introduced to classical RS uses external
semantic databases containing knowledge encoded according to the Linked Data principles [222].
These systems are sometimes referred to as a knowledge-based RS [223] leading to confusion with
traditional knowledge-based approaches, as described in the previous section. In general, this new
type of RS falls into the category of content-based RS because it mainly uses additional information
from Linked Open Data (LOD) to learn features of items. We adopt the term semantics-aware
recommender systems, often also called Linked Data-based RS, which describe a type of RS
that relies ”. . . on the integration of external knowledge, such as machine readable dictionaries,
taxonomies (or IS-A hierarchies), thesauri or ontologies (with or without value restrictions and
logical constraints), for annotating items and representing user profiles in order to capture the
semantics of the target user information needs.” [224].

The knowledge sources used by semantics-aware recommender systems reach from common
sense, linguistic and domain-specific ontologies to encyclopedic knowledge bases, such as DBpedia
and Wikidata, or in general, any dataset from the Linked Open Data Cloud55. According to a
study of Figueroa et al. [223] DBpedia is the most widely used dataset because it is one of the
largest sources available and suitable for a variety of domains. LOD datasets are mainly used
because of the available information for heterogenous items and the lack of semantic information
for them. For example, named entity linking to DBpedia for item descriptions helps to overcome
polysemy and synonymy problems of keyword based approaches. Additionally, further information
on linked entities can be retrieved from knowledge bases to discover new similarities, for example,
movies with different directors that in turn have many commonalities (e.g., birthplace, awards
won) [225] will be preferred for recommendations. Finally, schema information with taxonomic
knowledge is used to categorize items according to their classes and to discover items that have
common super classes [226].

Linked Data is used for RS in the following four ways as reported by Figueroa et al. [223]:
”Linked Data driven RS rely mainly on Linked Data to perform their tasks, hybrid RS use Linked
Data and also other techniques, representation only RS do not provide Linked Data-based rec-
ommendations but use Linked Data for representing data based on RDF, and finally exploratory
search systems that are not RS but may help users to find concepts or topics and have some similar
features to RS especially in the use of Linked Data.”

2.5.3 Recommendation Systems in Software Engineering

Research and development for recommendation systems have strong roots in e-commerce appli-
cations, but they become more and more important in the field of software engineering (SE).
”Key factors giving rise to practical RSSEs include large stores of publicly available source code
for analyzing recommendations, mature software-repository mining techniques, and mainstream
adoption of common software development interfaces, including Web interfaces such as Bugzilla
and tool-integration platforms such as Eclipse.” [227].

The main difference between traditional RS and recommendation systems in software engineer-
ing (RSSE) is that the context of recommendations is difficult to grasp. This is mainly because of
the variety of tasks associated with building software systems and because the application do-
main is not known beforehand. Additionally, programming tasks are very often accompanied with

55http://lod-cloud.net/

53

http://lod-cloud.net/

information seeking (e.g., searching on Q&A websites such as Stack Overflow56). Consequently,
data mining and external knowledge sources play an important role.

RSSE may analyze many different sources of information [75]: Source code (e.g., of a project, of
a framework, external source code repositories), project history (e.g., changes in a version control
system), communication archives (e.g., forums, issue trackers), APIs and their documentation,
the integrated development environment (IDE) itself, interaction traces (e.g., logs of user actions),
execution traces (e.g., of a running software system), and the Web (e.g., tutorials, Q&A websites).

As a holistic recommendation system is not feasible for SE, RSSE are often task-specific and
focus on specific aspects of software development (e.g., source code specific recommendation, such
as refactoring and code reuse, or recommendations related to bug reports and feature requests).
The most well-known recommendation feature implemented in most IDEs (e.g., Eclipse) is code
completion, which helps developers in finding variables, methods and parameters efficiently with
context-sensitive pop-ups. It is based on the type system of the programming language as well
as language features of the core language and available frameworks. In order to improve rec-
ommendation ranking, learning from examples is used [228]. Important RSSE implementations
are: Strathcona [229] for code example recommendations for third-party libraries, Hipikat [230]
for the recommendation of project information for maintenance tasks, and CodeBroker [231] for
recommending methods to fulfill an implementation task.

Like the above approaches, most available recommendation systems deal with tasks that are
related to programming, because they are closely connected to integrated development environ-
ments. Recommendation systems for software modeling have so far not received much attention,
although modeling is considered a very important task in software engineering by both research
and industry [36]. One reason is that modeling is still a separate activity often performed in
separate tools. A few approaches touch some aspects of modeling, such as model completion for
state machines using constraint logic programs [232], guided DSL development using constraints
and presenting possible editing operations [233], and automatization of software product line en-
gineering [85]. Recommendation for modeling is still predominantly based on guidelines and on
examples using model repositories, but their adoption is still challenging [234].

2.6 Summary

In this chapter, the fundamentals of four research areas were presented, whose interaction is ad-
dressed in this dissertation. We introduced the foundations of software modeling, general concepts
of models and modeling languages as a software engineering tool at a higher level of abstraction.
Domain Modeling, the application field of this dissertation, and related methods were presented
to demonstrate the importance of achieving a common understanding among stakeholders in soft-
ware projects by explicitly creating domain models using domain-specific terms and relationships.
The field of knowledge bases was discussed, including various types of knowledge representation
and knowledge management using Semantic Web technologies. Linked Open Data plays the
most important role as it provides the standards for a variety of datasets that include common
sense and domain-specific knowledge. We have presented the field of information extraction and
basic methods of natural language processing that allow the (semi-)automatic generation of struc-
tured facts from unstructured data sources. Most important is the extraction of terms from
natural language text and the application of distributional methods to derive semantic relation-
ships between them. Finally, we reviewed the basics of recommender systems, highlighted trends
in the use of Linked Data in Semantics-Aware Recommender Systems, and determined the
lack of implementations of recommendation systems for modeling tasks.

56https://stackoverflow.com/

54

https://stackoverflow.com/

Chapter 3

Semantic Modeling Support

Domain modeling is a challenging task because it requires multidisciplinary collaboration and
information gathering from different groups of people, documents and other sources of knowledge.
Collecting appropriate information for a software project and implementing it in domain models is
often time-consuming and decoupled from modeling tools. In this chapter, a new methodology is
developed to provide domain information directly during modeling, addressing the first challenge
of domain modeling: the high cost of acquiring domain knowledge.

3.1 Introduction

In this chapter we introduce the concept of semantic modeling support and detail the approach of
the thesis. Modeling: The activity of creating and refining models. In our case these models are
domain models that focus on capturing concepts and relationships of particular application areas.
Support : Modeling activities are assisted with context-sensitive pieces of information. Support is
completely automated in contrast to guidelines or methodologies. Semantic: Modeling support
focuses on the domain-specific terms and their relationships in domain models in contrast to
syntactic modeling language assistance.

The chapter is organized as follows. First, related modeling methods are reviewed in Sec-
tion 3.2. The overall approach of modeling support with automated knowledge acquisition is
introduced in Section 3.3. Then, the model refinement operations are described that are extended
by the semantic modeling support (cf., Section 3.4). This includes the description of respective
domain modeling constructs and a number of scenarios that include the definition of the proposals
the user will receive. Section 3.5 analyzes how conceptual relationships between terms in domain
models are represented across different linguistic and knowledge modeling paradigms. Based on
the analysis, a mapping between these relationships is developed. After that, we focus on what
the retrieval of related terms should look like according to the analyzed semantic relationships
(cf., Section 3.6). We then describe the conceptual framework and prerequisites of knowledge ac-
quisition from unstructured text datasets (cf., Section 3.7) and from structured knowledge bases
(cf., Section 3.8), and we finally conclude the chapter in Section 3.9.

3.2 Related Modeling Methods

Semantic modeling support has been predominantly investigated in the area of connecting ontology
development with model-driven development [136]. A recent book by Nalepa and Baumeister [235]
describes synergies between knowledge engineering and software engineering by applying software
and modeling methods in ontology development and vice versa. At the conceptual level there
is still ongoing work to unify ontological and software modeling paradigms [236], approaches to
adopt modeling concepts from each other [237], and a series of works by Giancarlo Guizzardi to
extend MDE languages with ontological foundations [238, 239, 240].

55

Tairas et al. [241] describe how the domain analysis phase of DSL development benefits from the
use of ontologies. Their approach is based on manual ontology construction during early stages of
domain-specific language development. Thonggoom et al. [242] support conceptual modeling using
data model instance repositories. The repositories are created from SQL schema libraries with
several hundred relations, and thus contain patterns from prior database designs to allow mod-
eling knowledge reuse. The REBUILDER UML system [243] aims at a similar goal for UML
diagram reuse. The design assistant uses case-based reasoning. The OntoDSL framework [244]
uses ontology technologies at the meta-model level (such as reasoning) to help DSL users identify
model-level inconsistencies. The CoCoViLa tool [245] generates metamodels of domain-specific
languages from OWL descriptions.

3.3 General Support Procedure

The procedure of our intended modeling support is shown in Figure 3.1. The approach incorpo-
rates an iterative process with three steps. Each of the steps is associated with tools that are
used in the activity, and with artifacts that are produced or consumed, respectively. Starting
with model refinement, one iteration reads as follows: A manual change in a domain model is
made. Based on the current state of the model, domain knowledge is acquired automatically. The
acquired knowledge is transformed automatically into appropriate suggestions that influence the
next refinement step.

Model

Refinement

Knowledge
Acquisition

Modeling
Guidance

Model

Advisor

Modeling

Tool

Extractor

Autocompletions

Element

Suggestions

Domain Model

Knowledge

Bases

Text

Step

Transition

Artifact

Tool

Input/Output

Figure 3.1: Iterative approach of supported modeling

Model Refinement is a manual activity where a developer creates a new model or changes
an existing one. It is the developer’s task to represent real-world concepts and relationships in a
domain model using a modeling language (e.g., UML class diagrams, ER diagrams). Usually, an
existing modeling tool is used to perform this task. The tool implements the modeling language
and offers the possibility to create models conforming to the language. The objectives of the thesis
are the identification of model change operators that can be semantically supported. This requires
the mapping of modeling relationships to semantic relationships of knowledge representations. In
addition, the proper extraction of the content of domain models as well as the connection of
suitable modeling assistance services to the modeling environment will be developed.

Knowledge Acquisition is the step in which domain knowledge for a specific model is gath-
ered. The acquisition is based on the terms that are used to name the elements (e.g., class names
or association names). We pursue two strategies: First, we exploit existing structured knowledge
sources to acquire the required domain knowledge. Knowledge bases and ontologies (e.g., WordNet
or Cyc) are automatically queried for terms of a model to retrieve related terms. The objectives

56

of the thesis are the connection of an exemplary set of knowledge bases and the implementation
of an easy-to-use mechanism to plug in new knowledge sources. Secondly, it is a well-known
problem [88, 89] that existing knowledge bases (often created manually) do not contain enough
information or do not exist at all for respective target domains. We address this issue by the au-
tomated creation of own semantic knowledge sources from natural language datasets that cover a
variety of domains. The objective of the thesis is to build domain-independent methods and tools
to extract terms and their related terms from text corpora. The extracted information is used as
a primary source for modeling suggestions. Extractor components implement the extraction from
text datasets and knowledge bases.

Modeling Guidance is the activity in which domain knowledge obtained from different
sources is aggregated and transformed into appropriate recommendations. Suitable excerpts of
the data are generated and element suggestions are displayed to the user. The recommendations
are highly context-sensitive depending on what the developer currently selects, creates or modifies
in the domain model. It is the goal to present semantically related model elements that sup-
port the developer’s decisions on what to include in the model and how to connect the elements.
The objectives of the thesis are the development of data aggregation and transformation methods
and tools to translate between the knowledge representation world and the modeling world. It
is a challenge for a recommender system to suggest items that are of importance for the current
situation. This thesis will develop appropriate ranking algorithms for the obtained knowledge.

3.4 Domain Modeling Support Scenarios

In this section we describe in detail the modeling support to be performed by our method. During
domain model development a user has several options to change the model. These options usually
depend on the used modeling tool and the respective implementation of the modeling language.
In order to provide modeling support for a manageable set of operations we exactly define here for
which modeling activities what kind of support shall be accomplished. We first examine the mod-
eling notation and modeling constructs commonly used for domain modeling (cf., Section 3.4.1).
Based on possible model refinement operations, we then specify a set of scenarios and expected
suggestions by using examples. We distinguish between two different kinds of support. First,
context information will be provided if an element of a domain model is selected by the developer.
The context information includes possible related model elements with all kinds of relationships
(cf., Section 3.4.2). Second, if a new element is created, automated suggestions will be provided
on how to name the element. The support is dependent on the type of connection between the
new element and existing elements of the model (cf., Section 3.4.3)

3.4.1 Domain Modeling Languages

There are several ways to create and manage domain models. The methods and tools developed in
this thesis apply to several modeling languages and modeling means. Prominent representatives
include UML class diagrams and Entity-Relationship (ER) diagrams. In software engineering,
UML class diagrams are often used to express concepts and relationships of a business domain [246].
Typically, they are used to derive design models for object-oriented programming languages during
development. ER models usually play a role in data-driven applications to express types and
relationships [8]. They are transformed into relational models for database design. Other examples
for domain modeling languages include Object-Role Modeling (ORM) [247], Conceptual Modeling
Language (CML) [248], and multi-level modeling [249, 136].

Although there is a continuing fundamental discussion in the conceptual modeling commu-
nity [237, 249] about the correct representation of real-world concepts with modeling languages,
all approaches have in common that the respective modeling language expresses conceptual struc-
tures of a domain with specific terms to improve the understanding of the problem area. To provide
concrete examples and implement appropriate support tools, we will exemplarily use UML-like
class diagrams as an example to illustrate our work. In fact, several recent empirical studies have

57

shown that the UML class diagram is the most widely used modeling paradigm in the indus-
try [19, 25, 250, 8]. As semantic modeling support focuses on the terms contained in the models
(how things are named), it can easily be transferred to other modeling languages.

IntensiveCareUnit

+name

Doctor

+name

+address

Hospital

Anesthetist

+name

Patient

Surgeon Surgery

employstreats

Figure 3.2: Simple domain model example in the healthcare domain

Figure 3.2 depicts a simple domain model in the health care domain using the UML class
diagram notation1. The diagram shows several facts with domain-specific terms that can be inter-
preted as follows: Hospitals employ different types of doctors, and these doctors treat patients. In
addition, hospitals are made up of different parts. The graphical symbols used and the underly-
ing modeling means determine the interpretation of the domain information. Domain models are
problem-specific and therefore follow the closed-world assumption [251]. This means that every
concept and relationship used in development must be explicitly stated. In this particular case,
the domain model defines that there are only two types of doctors and two different parts of a
hospital (although it is known that there are more entities in the real world).

The domain model was created using parts of the UML metamodel and class diagram graphical
notation. The following modeling constructs are relevant to our work. Classes group sets of
instances that have common features. They are shown as rectangular boxes in the diagram. For
example, the class Patient represents the concept of persons under medical care. Classes can have
attributes that represent certain properties of the concept (terms inside the class box). In the
example, hospitals can have names and addresses. At a certain level of refinement attributes are
usually equipped with cardinality restrictions and with datatypes (not shown in the figure).

The illustration shows three different types of relationships. (1) Generalization / specializa-
tion relationships connect more abstract classes to more specific classes or vice versa (arrow with
closed arrowhead)2. The domain model example defines that Surgeon and Anesthetist are specific
doctors. (2) The second relationship shown is the composition (connection with a filled diamond).
It expresses that a class is part of another class (e.g., an IntensiveCareUnit is part of a Hospital).
The composition is a special kind of aggregation, i.e., the parts cannot exist without the whole.
Using a normal aggregation connection, part and whole may exist independently of each other
(e.g., tires of a car). Both aggregation and composition are referred to as containment relation-
ships. It is the developer’s decision which is appropriate. (3) The association is the third type of
relationship (arrow with open arrowhead). It is a weaker kind of relationship and expresses that
one class affects the other (e.g., Patient and Doctor). Normally, the type of influence is described
by the association name (treats), but not necessarily. The association can have a direction (as
shown in the picture) and may also have cardinalities.

The following is important for semantic modeling support: Concepts of the respective domain
are represented with classes using normal nouns. Two or more classes can either be linked with
part-whole (”is part of”) or taxonomic (”is a”) relations, or with an association using arbitrary
verbs. Consequently, if the model is transformed to a linguistic representation, the domain-specific

1Other domain model examples in the hospital domain and other domains are available from:
http://www.uml-diagrams.org/examples/hospital-domain-diagram.html?context=cls-examples

2Note that only one arrow is visible, but for each of the sub-classes one relationship exists in the model.

58

http://www.uml-diagrams.org/examples/hospital-domain-diagram.html?context=cls-examples

information can be largely expressed using verbs that link nouns [252]. This corresponds to the
design steps for entity relationship diagram creation, in which textual descriptions are analyzed
to identify entity types via noun phrases and relationship types via verb phrases [253].

3.4.2 Providing Contextual Information

The goal of providing contextual information is the recommendation of possible connected model
elements together with their relationship types for a selected domain model element. The in-
formation displayed corresponds to the previously described modeling means of UML-like class
diagrams. The following two scenarios are supported:

Scenario 1 – Selecting a class. If the developer selects a class, the user will see various types of
information. A class can be linked with a generalization, a specialization, an aggregation (part or
whole), and named / unnamed association relationships. Figure 3.3 shows all six types of modeling
suggestions and respective examples. The first two types of suggestions refer to the generalization/
specialization link. (1) Subclasses indicate possible specializations, in this case special types of
hospitals. (2) Superclasses show more general terms for generalizations of the hospital class.
(3) Aggregated classes refer to possible parts (e.g., parts of a hospital). (4) Container classes show
what a hospital can be part of. The last two types of suggestions refer to the association link
to other classes. (5) Related classes show possible linked classes for which the relationship is not
specified further (no verb). (6) Associated classes show possible linked classes together with their
association names.

Interaction Modeling Support
Select Class Context Information for the Class

Figure 3.3: Scenario 1 – Contextual information for a selected class

Scenario 2 – Selecting an association When an association is selected, model elements are
proposed in relation to the association and its already connected classes. There are three different
types of suggestions, as shown in Figure 3.4: (1) Alternative associations: Other association names
are displayed, to which both classes can be connected. The example shows that a doctor could
examine or visit a patient, and a patient could consult a doctor. (2+3) Associated classes: For
each association end, alternative connected classes are also provided. Modeling suggestions in the
example show that a doctor can treat a disease, an animal or a wound. For patient and treat
different types of treatments are proposed.

59

Interaction Modeling Support
Select Association Context Information for the Association

Figure 3.4: Scenario 2 – Contextual information for a selected association

In summary, when selecting model elements, the upcoming modeling step is not yet known.
Consequently, the provision of contextual information aims to propose a variety of information for
all possible modeling actions to assist in completing the model.

3.4.3 Providing Suggestions for Element Names

In domain modeling, new elements are added to diagrams and named with domain-specific terms.
The goal of providing suggestions for element names is to develop an autocomplete function for
creating new model elements similar to search engines. Autocomplete is a feature in several
applications that helps users to type in input fields. It is used successfully in mobile phones, web
browsers, search engine interfaces and integrated development environments. Assistance is either
provided immediately during typing or triggered with a keyboard shortcut. Autocomplete tries
to predict the user input based on already entered characters, background knowledge, rules and
heuristics.

Autocomplete in integrated development environments provides context-sensitive pop-up lists
of possible completions for a particular programming language, depending on the grammar of a
language and existing source code (also known as content assist). Search engine autocompletion
is indispensable in today’s search engines. It suggests keyword terms while typing in search fields.
Search query suggestions are usually based on natural language statistics, past user searches, and
the popularity of terms.

Autocomplete for domain modeling suggests a set of domain-specific terms while typing the
name of a model element. Since the proposals should match the existing model elements, the
suggested terms must be in semantic relationship to the existing terms. The suggestions depend
on (1) the type of the new element (class or association), (2) the current state of the model (existing
names of elements and relationships) and (3) the type of relationship that is drawn from the new
element to another model element (e.g., a specialization). The main features of autocomplete are
the adaptation of the suggestions during the typing and the ranking of the terms by relevance.
Below we describe scenarios in which new elements are created and what the support should look
like.

Scenario 3 – Creation of a class (no connection). Modeling tools usually offer the creation
of new classes in a model without any connection. Typically, this happens, when classes are
added to the diagram and the respective connections are drawn afterwards. In this case, class
name suggestions are dependent on all existing class names in the model. Particularly, in the list
of suggestions class names should appear that are related to all the existing classes ordered by
relevance (cf., Figure 3.5).

60

Interaction Modeling Support
Add Class Without Connection Suggestions for the name of the related class

Figure 3.5: Scenario 3 – Suggestions for related class names when adding a disconnected class

Scenario 4 – Creating a subclass. A subclass is created when the developer uses the special-
ization link from an existing class to empty space in the diagram (cf., Figure 3.6). In this case, the
class name suggestions depend on the associated superclass. The example shows different types
of doctors (different types of medical specialists). Existing subclass names must not appear in
the list of suggestions, so the appropriate context of the modeling action must be determined (all
existing subclasses of the associated superclass must be considered).

Interaction Modeling Support
Add Subclass Suggestions for the name of the subclass

Figure 3.6: Scenario 4 – Suggestions of subclass names when adding a specialization

61

Scenario 5 – Creating a superclass. Similar to creating a subclass, the generalization link
creates a superclass. The example shows the recommendation of more general terms for the doctor
class (see Figure 3.7). Existing superclass names may not appear in the list of suggestions.

Interaction Modeling Support
Add Superclass Suggestions for the name of the superclass

Figure 3.7: Scenario 5 – Suggestions of superclass names when adding a generalization

Scenario 6 – Creating an aggregated class. If the developer uses a composition or ag-
gregation link that starts from an existing class, an aggregated class is created in the diagram.
The example in Figure 3.8 shows possible parts of a hospital. The suggestions depend on the
associated container class, existing parts, and the type of aggregation (either compositional or
non-compositional).

Interaction Modeling Support
Add Aggregated Class Suggestions for the name of the aggregated class

Figure 3.8: Scenario 6 – Suggestions of aggregated class names when adding an aggregated class

62

Scenario 7 – Creating a container class. If the opposite direction of a composition or
aggregation relationship is used, a container class is created. In the example used in Figure 3.9,
suggestions are made of which a hospital can be a part. Similar to the aggregated class scenario,
already linked classes must be taken into account by the recommender.

Interaction Modeling Support
Add Container Class Suggestions for the name of the container class

Figure 3.9: Scenario 7 – Suggestions of container class names when adding a container class

Scenario 8 – Creating an associated class. An associated class is created when the developer
draws an association link from a class to an empty area in the diagram. The association is created
without a name and a new class. Names for the new class will be recommended that are related
to hospital. This scenario is very similar to the third scenario, with the exception that related
classes are proposed only for the linked class and not for all classes in the diagram.

Interaction Modeling Support
Add Associated Class Suggestions for the name of the associated class

Figure 3.10: Scenario 8 – Suggestions of associated class names when adding an associated class

Scenario 9 – Creating an association When the developer creates an association link between
two classes, recommendations are provided for the association name (verbs). The suggestions
depend on both class names. If the association has no direction, verbs are suggested that apply
to both directions (e.g., Nurse observe Patient, and Patient ask Nurse).

63

Interaction Modeling Support
Add Association Suggestions for the name of the association

Figure 3.11: Scenario 9 – Suggestions of association names for a newly created association link

In summary, when creating new elements in a diagram, the most relevant names for the
newly created classes or associations are proposed, depending on the type of the relationship.
Normally, all scenarios also apply when a model element is renamed.

3.5 Mappings of Domain Model Relationships

The conceptual relationships used in domain models can be found in other research fields with
different representations. Our goal is to combine different types of knowledge sources into a sin-
gle recommendation system. In this section we analyze the inherent semantic relationships of
domain models from a lexical perspective and their representation in other sources of knowl-
edge. We focus on classes that represent the concepts and three types of relationships: gen-
eralization / specialization, aggregation, and association. We review literature from database
research [254, 155], linguistics [255, 256, 257], information systems [258, 238, 136, 259], and se-
mantic web research [260, 261, 262, 263], and relate the different types of relationships to each
other. Table 3.1 provides an overview, details are given as follows.

Specialization and Generalization are hierarchical abstraction mechanisms to refine ab-
stract classes to more specific ones and to group specific classes into more abstract classes. Spe-
cialized classes inherit the properties of the abstract class and introduce additional attributes or
operations. Classes are structured into a taxonomy using specialization and generalization. In
lexical semantics these conceptual relationships are referred to as hyponymy and hypernymy be-
tween words or phrases. Hypernyms are the more general terms and hyponyms the more specific
ones. In linguistics, this relationship is in the family of class inclusion [256] (different types of sub-
ordinate relationships). In thesauri specification (e.g., based on ISO 25964) both relationships are
expressed with the narrower term and broader term relation. The relationship can be mapped to
the subClassOf-relationship [264] in ontology definition with RDF/OWL as well as to the broader-
and narrower relationship of the SKOS specification [265]. Across disciplines it is often called is-a
relationship. Unfortunately, this term is used ambiguously, on the one hand referring to subordi-
nate relationships between classes and on the other hand referring to class-member relationships
(instance relationships).

Aggregation is used to specify a part-of relationship between two classes. One class acts as
the whole (the composite) and one class acts as the part (the component). We summarize both
aggregation (parts can exist independently of each other) and composition (parts cannot exist
independently of each other) under the term aggregation. In linguistics, part-whole relationships
are called meronymic relationships (meronyms are the parts and holonyms are the wholes). Six to
seven types of meronymy (e.g., component-integral object, portion-mass) are discussed in related
works [266, 254]. Part-whole relationships are not supported directly in the thesaurus definition
nor in the RDF / OWL ontology specification. There exist specialized vocabularies and approaches

64

to model these relationships in ontologies. There is a W3C Best Practice specification ”Simple Part
Whole” (SPW) that includes hasPart and partOf relationships. However, there are knowledge
bases that contain part-whole relationships but use a non-standard vocabulary (such as WordNet).

Modeling Language
Relationship

Lexical-Semantic
Relationship

Knowledge Source
Relationship

Specialization Hyponymy Subclass, Narrower Term
Generalization Hypernymy Subclass (inv.), Broader Term
Aggregation (Part) Meronymy HasPart (SPW), Meronym (WN)
Aggregation (Whole) Holonymy PartOf (SPW), Holonym (WN)
Association (named) Agent-Action Object Property
Association (unnamed)
or group of classes

Semantic
Relatedness

Related Term

Table 3.1: Corresponding semantic relationship types of different modeling paradigms

Association is the third kind of conceptual relationship we have analyzed in terms of other
representations. We distinguish between two types: unnamed associations, to express a simple
dependency between two domain model classes, and named associations that further specify the
type of association (usually with a verb). In linguistics, named dependencies fall into the category
of case relationships [256], more specifically in our case in agent-action relationships (e.g., dog –
bark). To a certain extent, RDF/OWL object properties with domain/ range restrictions can be
compared with named associations because they affect two classes of an ontology, as long as those
restrictions are specified (e.g., spokesman(PoliticalParty, Person)). While thesauri do not contain
named associations, the related term (RT) relationship is used to define a relationship between
two terms in a non-hierarchical way [267], and thus can be mapped to the unnamed association.
In lexical semantics, the unnamed association is referred to as semantic relatedness, an associative
relationship that describes any functional relationship between two words. From a lexical point of
view, the unnamed association is similar to a group of classes (the diagram is the container).

In summary, taxonomic relationships in domain models can be well mapped to other structured
knowledge sources such as thesauri and ontologies. Other domain model relationships are not
fully represented in these resources. As a result, they are a good source for acquiring knowledge
for our modeling support, but they are not enough. All domain model relationships and their
inherent conceptual relationships are rooted in various linguistic theories. Thus, the combination
of knowledge base queries and natural language analysis allows to retrieve related domain model
elements for all our modeling support scenarios.

3.6 Retrieval of Lexical Information

The modeling support scenarios and the semantic relationship mappings have essentially shown
that the semantic modeling support is focused on retrieving appropriate domain-specific terms
that have specific relationships to the other terms in a domain model. In this section, a series
of technology-independent queries for terms is derived with a focus on lexical relationships that
abstract from the details of the underlying knowledge bases to provide the content for the model
element suggestions.

Each query represents a function that accepts domain-specific terms as input and returns a
set of domain-specific nouns or verbs. Noun terms may be either single nouns (e.g., doctor or
hospital) or multi-word expressions (e.g., health care provider, x-ray diffraction, or rate of DNA
synthesis). The functionality of the queries is described, different types of input and expected
outputs are defined, and they are illustrated using examples.

The first four queries provide straightforward taxonomic and partonomic knowledge. The query
”Get Broader Nouns” retrieves more general noun terms for a single input noun. Generalization
relationships are organized in hierarchies, so the query should allow you to specify an optional

65

maximum distance. For example, a distance of two means that for any broader noun all the
broader nouns are also retrieved. The result of the query is a set of zero or more tuples containing
the broader nouns and their distance from the input term.

1 GetBroaderNouns(hospital,2)

2 --> (medical care institution,1)

3 --> (organization with individual clients,2)

4 --> (health care organization,2)

5 --> (healthcare facility,1)

6 --> (building,2)

Listing 3.1: Example of the broader nouns query using a distance of two

The query ”Get Narrower Nouns” determines more specific noun terms for a single input
noun. The functionality and structure of input and output is similar to querying broader nouns.
The distance should be specified carefully. Compared to the broader terms query, a distance of
two may already lead to a very large set of narrower terms. Listing 3.2 shows an example of
retrieving narrower terms up to a distance of two.

1 GetNarrowerNouns(doctor,2)

2 --> (allergist,1)

3 --> (medical specialist,1)

4 --> (anesthesiologist,2)

5 --> (baby doctor,2)

6 --> (cardiologist,2)

7 --> ...

8 --> (surgeon,1)

9 --> (neurosurgeon,2)

10 --> (cosmetic surgeon,2)

11 --> ...

12 --> ...

Listing 3.2: Example of the narrower nouns query using a distance of two

The query ”Get Part Nouns” returns noun terms that are in a part-of relationship to the
input noun. The distance is also applicable, therefore parts of parts can be retrieved. Listing 3.3
shows getting part terms for the term pregnancy.

1 GetPartNouns(pregnancy,2)

2 --> (segmentation,1)

3 --> (parturiency,1)

4 --> (uterine contraction,2)

5 --> ...

6 --> (morning sickness,1)

7 --> ...

Listing 3.3: Example of the part nouns query using a distance of two

The query ”Get Whole Nouns” works in the opposite direction in the part-whole hierarchy
and retrieves a set of nouns to which the input term belongs, as shown in Listing 3.4.

1 GetWholeNouns(cardiogram,1)

2 --> (medical checkup,1)

3 --> (medical examination,1)

4 --> ...

Listing 3.4: Example of the whole nouns query using a distance of one

66

The query ”Get Related Nouns” delivers nouns that have a functional dependency to the
input terms in a non-hierarchical way. The query allows three types of input: (a) A single noun
term is queried. The result of the query is a set of noun terms that depend on this single input
term. (b) As input a set of nouns is used. The query determines the noun terms that relate to
all the terms entered together. This is especially important to provide suggestions for new classes
in domain models if multiple classes already exist and the new class is not linked. (c) The third
type of input is a noun term together with a verb term. In this case, the query identifies relevant
noun terms that are associated with the verb to the input noun.

A distance as it exists in a hierarchy does not apply to a related nouns query. The relationship
between related terms is based on the semantic relationship [268] (see Section 3.5). Consequently,
the result of the query should be ranked based on this measurement. An example is shown in
Listing 3.5.

1 GetRelatedNouns(pregnancy) GetRelatedNouns(hypertension,induce)

2 --> #1 (childbirth) --> #1 (diabetes)

3 --> #2 (woman) --> #2 (oral contraceptive pill)

4 --> #3 (mother) --> #3 (preeclampsia)

5 --> #4 (month) --> #4 (pregnancy)

6 --> #5 (parturition) --> #5 (toxemia)

7 --> #6 (termination) --> ...

8 --> ...

Listing 3.5: Examples of the related nouns query using a single noun term and a noun-verb
combination

The query ”Get Related Verbs” retrieves verbs that have a functional dependency on noun
terms (e.g., agent-action, see Section 3.5). There are three different types of input allowed for the
query: (a) For a single noun, the query returns a set of verbs that depend on the noun. (b) There
is a variant of this query (Get Related Verbs With Nouns) that retrieves verbs together with linked
nouns that are related to the input term. (c) If two noun terms are provided as input, the query
will return verb terms that connect both nouns together. In all cases, the ranking of verbs should
be similar to the ranking of related nouns described in the previous paragraph.

1 GetRelatedVerbs(pregnancy) GetRelatedVerbs(patient,doctor)

2 --> #1 (occur) --> #1 (examine)

3 --> #2 (terminate) --> #2 (tell)

4 --> #3 (associate) --> #3 (ask)

5 --> #4 (contraindicate) --> #4 (treat)

6 --> #5 (avoid) --> #5 (consult)

7 --> #6 (prevent) --> #6 (visit)

8 --> ... --> ...

Listing 3.6: Examples of the related verbs query using a single noun term and two noun terms

67

Table 3.2 summarizes all queries for lexical information retrieval.

Query Name Input Expected Output

Get Broader Nouns Noun term Set of more general noun terms
Get Narrower Nouns Noun term Set of more specific noun terms
Get Part Nouns Noun term Set of component noun terms
Get Whole Nouns Noun term Set of composite noun terms

Get Related Nouns (a) Noun term Set of related noun terms
(b) Set of noun terms Set of related noun terms
(c) Noun + verb term Set of related noun terms

Get Related Verbs (a) Noun term Set of related verb terms
(b) Noun term Set of related verb + noun terms
(c) Two noun terms Set of related verb terms

Table 3.2: Summary of the technology-independent term queries

3.7 Knowledge Acquisition from Text Datasets

In this section, we detail the concept of how natural language text is analyzed to extract terms
and their relationships on a conceptual level. The methods of information extraction used have
been chosen so that they can be applied universally to all possible domains. Figure 3.12 shows a
general high-level extraction process. The process begins by collecting text documents from various
sources, either domain-specific (e.g., news articles, medical documents) or domain-independent
(e.g., web crawls, digital libraries). The next step is pre-processing (e.g., boilerplate removal) the
text document collection [269] to create a clean text corpus that can be accessed in a consistent
way. The main task is the implementation of the information extraction pipeline. It is called a
pipeline, since natural language processing is usually done in several steps, and the output from
a previous step is used as input to the next step and enriched with further annotations [270]
(e.g., part-of-speech tags, parse trees, relation instances, patterns). Evaluations are performed
to assess the quality of the extracted results. If necessary, the extracted facts are compared
with manually annotated examples, generated test sets, gold standards or existing knowledge
sources. In many cases, classical information retrieval measurements are used [116]. It is common
practice that evaluation of the extraction process results in refinement of algorithms, patterns,
and corresponding implementations (applicable to machine learning and rule-based approaches).

Collect

D��������
B��	d
C�
���

I��	�����
P���	ine

P�
��
�
A�	����

Evaluate /

R�����

Figure 3.12: General procedure of information extraction

Redundancy and Paraphrases. Popescu [271] and Banko [272] analyzed large corpora (es-
pecially web document collections) and discovered that they include a lot of redundancy. Ad-
ditionally, not only the same facts are mentioned in different documents, but natural language
formulations of the same statements vary within documents and from document to document
(paraphrasing [273]). This is not surprising, but a very important prerequisite for our text anal-
ysis procedure. Most information extraction systems focus on the identification of named entities
(class instances) and their relationships by learning natural language patterns (e.g., ”X is located in

68

Y” as a pattern for the relation cityLocatedInCountry, example instance: (Berlin,Germany)).
In contrast, as outlined before, our main interest is identification of relationships on a conceptual
level. Consequently, we analyze the mentions of concepts in natural language text that occur
redundantly and paraphrased as well, as illustrated in Figure 3.13.

T��� ������ arises especially �� ����� �s a problem in

communication between t�� doctor ��� ��� patient.
[…] Above all, the physician should recognize that the

expectations and hopes of both the doctor and the

patient are essentially the same. […] Patient-centered

care, with a stress on mutual participation by the

doctor and the patient, was proposed by Szasz and

Hollender. […] Both the doctor and the patient

reframe talk from the context of the psychotic crisis

to the institutional frame of the psychiatric interview.

Open and comfortable communication between the

patient and the doctor is essential for this synergistic

linkage to occur. […] The precise nature of that

process of thematizing is illustrated by comparing the

patient and the doctor, the witness and the judge,

[…] his perceptive analysis of the relationship

between doctor and patient that has led to this silent

state […] ,the potential intensity and depth of the

connection between doctor and patient emerge and

begin to exert their influence on students.

Figure 3.13: Examples of redundancy and paraphrasing in text documents for mentions of con-
cepts; sentences were obtained from [274] using the Google Books search with the respective
keywords

Word Co-occurrences and Distributions. For several decades, linguists have been arguing
that ”certain lexical items tend to co-occur more frequently in natural language use than syntax
and semantics alone would dictate” [275]. This phenomenon, also known as collocation, was first
popularized by Firth [209] in the Fifties. Closely related is the distributional hypothesis [208] that
implies that words with similar meanings occur in similar contexts. These foundational works led
to a number of studies in computational linguistics on how meanings can be derived from statistics
of language use (e.g., statistical semantics [211]). Usually, these approaches depend on the analysis
of large text corpora [189, 276]. Distributional semantics are still subject to research, for example
in the field of measuring word similarity [277] or detecting multi-word expressions [278, 279]. It is
important for our work that we can derive the latent semantic relationship between domain-
specific terms from frequently co-occurring words and phrases. Additionally, it is possible to
identify technical terms with the help of collocations [190].

N-Grams. Analyzing words and word sequences is a low-level method of statistical natural
language processing [275] and is typically used to create probabilistic language models. These
models predict the most likely next word for a sequence of input words and are used in OCR tasks,
spelling correction, or machine translation [190]. An n-gram is a sequence of n consecutive words.
An N-gram analysis determines how often a particular word or phrase appears in a text corpus.
The result is an n-gram corpus containing these counts, which is usually filtered by very rare N-
grams (frequency below a certain threshold) and contains sequences of up to 5 or 6 words. From
these statistics, such as trigram counts, it is possible to determine the most likely subsequent word
for two input words based only on the raw frequencies. The most interesting feature of N-grams
is that they act as a proxy for the original corpus [280]. As a result, information extraction
tasks can be performed on much smaller data. For the thesis, it is important that N-gram counts
can be used to derive semantic relationships between co-occurring words and terms.

Part-Of-Speech and Technical Terms. One step in the syntactic analysis of natural language
text is part-of-speech (POS) tagging. It is the process of determining the lexical category of each
word in a sentence and a prerequisite for further analysis of the grammar. Available part-of-
speech taggers [184] work with high accuracy. For the English language the widely adopted Penn
Treebank tagset [182] is used. Recent advances in POS tagging suggest using simplified universal
tagsets [183] to enable cross-language tagging. For example, such a tagset was used in the Google

69

N-Gram corpus with syntactic annotations [281]. The tags provided have the disadvantage that it is
not possible to distinguish between normal nouns and proper nouns. In this dissertation, however,
it is required to identify mentions of concepts and technical terms that normally are comprised of
normal nouns. One approach to terminology extraction in text documents is the direct use of part-
of-speech tags for keyword recognition. Justeson & Katz [282] analyzed that more than 99% of the
multi-word noun phrases for technical terms consist only of nouns, adjectives and the preposition
”of” and that these POS sequences can be used for filtering collocations. Feldman et al. [283]
used lemmatized word forms for mining term taxonomies. Both approaches and recent work on
part-of-speech tag analysis in the field of ontologies [284] confirm that lexico-syntactic patterns
is a sophisticated method of extracting terms. Nevertheless, recent information extraction systems
(e.g., PATTY [285], ReVerb [118]), which use POS patterns in a similar fashion, focus on learning
relationships for later association of named entities. In this thesis, we adapt these methods for
domain-independent concept extraction.

Extraction Approach of the Thesis. The following steps are taken to build an extensive
domain-independent semantic network of terms (cf., Figure 3.14). The dissertation focuses on
the extraction of semantically related terms directly from N-gram data. That is, in a first step,
n-grams and their corpus frequencies are determined. The n-gram dataset serves as a proxy to
the original text corpus. Therefore, it is not necessary to perform information extraction tasks
on the original sentences, which would require orders of magnitude greater processing overhead.
The identification of concept terms is done using a pattern-based approach that relies on shallow
semantic features of sentence fragments. Relation extraction is based on distributional semantics
of co-occurring terms. The semantic network aims at encoding identified terms as nodes in a graph
and connects them with weighted edges if a relationship has been identified.

������

 �!��ocessing

N-G�"#

G!$!�"%&on

'!�#and ��$(!�%

E)%�"(%&�$

*!+"%&�$�o&�

E)%�"(%&�$

S!#"$%&(

N!%,��k

��$�%��(%ion

Figure 3.14: Text extraction approach of the thesis

3.8 Knowledge Acquisition from Knowledge Bases

This section details how knowledge bases are used to acquire additional structured information
about domain-specific terms and their relationships. The creation of knowledge bases has a long
tradition in research in artificial intelligence and is based on methods of ontology and knowledge
engineering [166, 167]. Figure 3.15 shows the general concept of knowledge base creation for
manual and automated methods from a practical point of view. Usually, an ontology schema is
defined (see Figure 3.15, upper level in the knowledge bases). The schema is a vocabulary that
defines concepts, properties, descriptions, and rules of ontology. It is often referred to as TBox
and contains the terminological knowledge of ontology [286]. In most cases, schema definition is
a manual step for both the manual and automated creation of knowledge bases. RDF Schema
Language (RDFS) [261] and Web Ontology Language (OWL) [287] are the standards for the
schema definition.

A knowledge base is populated by adding factual knowledge at the instance level (see Fig-
ure 3.15, lower level in the knowledge bases) using the vocabulary at the schema level. The
instance level is called ABox and contains the assertional knowledge. In the manual case, both
levels are created, managed and updated manually by ontology engineers. The automated knowl-

70

Extractors

/01234s

(a) (b)

Figure 3.15: General concept of knowledge base creation and access: (a) Manual knowledge base
creation. (b) Knowledge base creation with the help of automated extractors

edge base population will use extraction tools to acquire instance knowledge from external sources
and automatically add facts to the knowledge base. The RDF language [288] is the standard
representation for knowledge base facts in the form of subject-predicate-object triples (RDF state-
ments).

RDF databases (triplestores) are responsible for storing and providing access to knowledge base
data and related schema information. While small knowledge bases can be locally managed on a
document-driven basis, extensive knowledge bases (e.g., DBpedia [103], Geonames [289]) require
sophisticated management, indexing, searching, and access to the contained semantic data. A
triplestore provides a SPARQL endpoint, which is a web-based interface for querying the knowledge
base. Knowledge-based applications are built on top of knowledge bases using the SPARQL
language [290] and the processing of the stored facts.

Existence of Appropriate Knowledge Bases. The development and use of ontologies in
information systems has its roots in the biomedical domain [291, 292]. In the last two decades
a shift from isolated, small, and hand-crafted ontologies to large, interlinked, and automatically
generated knowledge bases can be observed [293]. Making ontologies and semantic datasets pub-
licly available on the web was mainly driven by several Semantic Web and Linked Open Data
initiatives [294, 103]. DBpedia, a knowledge base created from Wikipedia containing encyclope-
dic knowledge, became the central hub of the linked data cloud. Nevertheless, manually created
knowledge bases are still required and are very reliable foundational works. The most prominent
example is the lexical database WordNet [108, 257] on which many projects are based. Although
the amount of linked and semantic data is growing3, there is still a lack of large domain ontolo-
gies [167, 295].

Lexical Information in Knowledge Bases. Although the availability of knowledge bases
has improved in recent years, the publication of linked data focuses almost exclusively on the
instance level. It is common for knowledge bases to consist of a relatively small ontology schema
describing the model of the data and a large amount of factual knowledge. On the one hand,
to provide modeling suggestions at the conceptual level, lexical information and domain-specific
terms hidden in ontology schemata must be used. On the other hand, specialized knowledge bases
that focus on lexical knowledge have to be used. As mentioned earlier, WordNet [108] is the most
widely used lexical database for the English language. Foundational ontologies that describe top-
level concepts and common sense knowledge bases are also a source of domain modeling knowledge
(e.g., Cyc [112], and Suggested Upper Merged Ontology (SUMO) [296]). The Lexicon Model for
Ontologies (lemon) [297] is a promising vocabulary for the exchange of lexical information. So far,
however, only a few ontologies use this model. The creation of linked data resources for linguistic
applications is still a subject of research [298, 299, 300].

3E.g., see the Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch
and Richard Cyganiak. http://lod-cloud.net/

71

http://lod-cloud.net/

Of course, the creation of lexical resources for linguistic research and natural language ap-
plications does not exclusively refer to the ontology and linked data community. Thesauri and
controlled vocabularies have been created for many years [267] (e.g., Roget’s Thesaurus [301]).
Many of them still exist in isolation, use proprietary data formats (e.g., OpenThesaurus4) or are
not freely available (e.g., WordWeb5). Recently, several efforts have been made to convert pub-
licly available vocabularies into RDF representations, such as: the Library of Congress Subject
Headings (LCSH) linked dataset [302] (2008), EuroVoc and related European vocabularies [303]
(2013), and Lexvo [304] (2015). Many RDF representations use the Simple Knowledge Organiza-
tion System (SKOS) [265] because of the broader and narrower relationships that are defined in
the SKOS vocabulary [305]. Nevertheless, there are many thesauri and vocabularies that use their
own data models.

Heterogeneous Data Models. As described in the introduction, the variety of lexical resources
poses the challenge of making unified access to lexical information more difficult. Heterogeneity
exists on two levels: First, the schemata for lexical information organization differ from knowl-
edge base to knowledge base. Although there are initiatives (e.g., Open Linguistics Working
Group [306]) to harmonize lexical resources, this problem remains unresolved. An example of
how the word dentist and its concept is modeled in WordNet, OpenCyc, and EuroVoc is shown
in Figure 3.16. In WordNet, the literal ”dentist” is a written representation that is linked to a
canonical form of a particular sense (not shown in the illustration), that is in turn linked to lexical
entry that belongs to a synset. In OpenCyc, ”dentist” is a specific label type of an OWL class
and an instance of a medical specialist type. In EuroVoc, ”dentist” is a literal form of a preferred
label of a thesaurus concept.

555

1106789::;n

wo:Synset

rdf:type

dentist-n

wo:synset_

member

lemon:

LexicalEntry

rdf:type

...

lemon:writtenRep

dentist

M<=>vVjfgpwpE
bGdrcN5Y29ycA

cyc:Medical

SpecialistType

rdf:type

dentist

cyc:

prettyString

ev:3593

evs:Thesaurus

Concept

skos:

Concept

ev:214958

skosxl:prefLabel
rdf:type

rdfs:

subClassOf

(a) Lemon-based WordNet

representation

(b) OWL-based OpenCyc

representation

(c) SKOS-based EuroVoc

representation

dentist

skosxl:

literalForm

Figure 3.16: Knowledge base data model heterogeneity: Representation of the concept ”dentist”
in WordNet, OpenCyc and EuroVoc

Second, there is also a semantic heterogeneity. Depending on the scope of the knowledge
base and the requirements of the creators, the actual lexical and conceptual information differs
between the knowledge bases. In WordNet, for example, the more general concept (hypernym)
of the dentist is ”medical practitioner”. In OpenCyc, a dentist is a kind of ”prescriber” and
an instance of ”medical specialty”. In EuroVoc, the dentist is associated with the broader term
”health care profession”.

Extraction Approach of the Thesis. It can be summarized that a lot of lexical information is
already available as queryable RDF data. Vocabularies like SKOS and lemon aim at standardiza-
tion but are not yet sufficiently implemented. Lexical information of terms and their relationships

4https://www.openthesaurus.de/about/download
5http://wordweb.info/

72

https://www.openthesaurus.de/about/download
http://wordweb.info/

exist on schema level, intermediate proprietary data models and on instance level of knowledge
bases. Our term queries can be partially answered using the available data. On the one hand, it
is required to deploy transparent access to the diversity of lexical information. Ontology match-
ing [307] would be one option to create a large unified lexical knowledge base. However, it has the
disadvantages that a unified data model has to be developed, full access to all of the knowledge
bases has to be provided and a computationally intensive alignment process has to be employed.
The strategy of this thesis is to leave the knowledge bases as they are and to provide an easy
plug-in mechanism that makes it possible to query and extract required information on demand
(cf., Figure 3.17). On the other hand, it is required to integrate and match the obtained query
results. The thesis aims at collecting as much information as possible in favor of recall and focuses
on ranking strategies in the recommender systems.

Standard Models

Plug-in

Development
Wrapper

Generation

Lexical

Information

Extraction

K?@FHJLOJ Q@UVcJ
W?XHYZ[Z

\ZJV]J^[?JL
Template

Development

Figure 3.17: Knowledge base extraction approach of the thesis

3.9 Summary

In this chapter, we presented the detailed approach of domain modeling support with semantic
model element suggestions. The modeling assistance follows an iterative procedure in which after
each refinement step domain knowledge is acquired according to the domain-specific terms in the
model and recommendations are derived and presented to the user to be used in the next modeling
operation. We exemplarily chose domain modeling based on UML class diagrams, the most widely
accepted standard for model-based software development in industry, to illustrate the modeling
support. Nine modeling scenarios have been identified in which contextual information and search-
based term autocompletion is provided. The assistance focuses on recommendations of class names,
represented as nouns and noun phrases, as well as suggestions of association names, represented
as verbs. The semantic relationships used in domain models have been mapped to lexical and
knowledge modeling relationships as a basis for information extraction from text datasets and
structured knowledge sources. We defined ten technology-independent queries that deliver the
necessary domain-specific terms for the modeling recommendations. The implementation of these
queries is twofold: First, pattern-based and n-gram-based information extraction from text corpora
is developed to create a large body of terms and relationships that quantify the degree of semantic
relatedness using statistical semantics. Second, extensible knowledge base querying is developed
to retrieve lexical information and structured semantic relationships from heterogenous knowledge
bases. Finally, the integrated information from extracted terms and connected knowledge bases is
used in a recommendation system.

73

74

Chapter 4

SemNet: Extraction of
Semantically Related Terms

One of the biggest difficulties of knowledge acquisition is that domain knowledge is largely con-
tained in unstructured information sources. The proportion of structured information sources is
very low compared to natural language information such as textbooks, dictionaries, encyclopae-
dias, requirement specifications or technical documentation. Over the past decade, several projects
have proposed automated processing techniques to create large-scale factual knowledge resources
from semi-structured and unstructured data, mostly focused on the instance level. As domain
modeling takes place at the conceptual level, many of these sources cannot be used. This chapter
develops novel methods and tools for extracting conceptual terms and relationships, addressing
the third challenge of this thesis: the lack of conceptual knowledge resources.

4.1 Introduction

In this chapter we describe the automated construction of SemNet, a large-scale semantic network
of terms and their relationships. SemNet is created using a huge natural language dataset that
covers virtually every possible domain. We apply natural language processing to extract concept
terms and multi-word expressions and their latent semantic relationships. SemNet comprises a
large body of knowledge with almost 6 million noun and verb terms and over 355 million quantified
binary and ternary relationships.

The chapter is structured as follows: In section 4.2 we compare our work to state-of-the-art
systems. Section 4.3 describes in detail the complete text analysis process and respective imple-
mentations. We describe the Google Books N-gram dataset, dataset processing steps, linguistic
analysis, concept extraction, relation extraction, extension of the analysis context and the con-
struction of SemNet. Section 4.4 provides insights into analysis results of each step and discusses
our findings. Finally, in Section 4.5 the semantic network is evaluated by comparing term and
relationship coverage against existing semantic databases.

4.2 Related Extraction Methods

In this section we summarize the state of the art in related term extraction. We start with recent
methods that cover certain aspects of extraction with respect to term detection, analysis models
and data sources. After that we analyze latest approaches of neural word embeddings and describe
how they relate to our work.

75

4.2.1 Keyword and Relationship Extraction

State-of-the-art systems for keyword extraction use supervised learning techniques or graph-
based methods and external knowledge sources (e.g., [188, 186]). These approaches usually con-
centrate on grouping relevant keywords to determine the main topics of documents. Hasan and
Ng [308] and Beliga et al. [309] provide recent surveys on keyphrase extraction and graph-based
methods. In general, these approaches are not concerned with the relationships between terms
that we require. Nevertheless, they use similar methods (e.g., syntactic information, N-grams) to
select candidate terms from text documents and to group terms according to semantic relatedness
measurements as we do.

There are three works on information extraction from N-gram data but with different
goals. Tandon et al. [310] focus on the discovery of syntactical patterns in Web N-Gram data to
populate isA, partOf, and hasProperty relationships based on seeds from ConceptNet. While
the main goal is pattern extraction and evaluation, the approach does only consider single word
terms as arguments for the relations. Also, the length of most of the patterns does not allow
to extract longer terms from a fivegram context. Nulty et al. [311] also analyze Web N-Gram
data, but in the context of collocations (noun-noun compounds). They use lexical patterns to
determine semantic relations of the modifying word in a compound (e.g., temporal relationship in
”summer travel”). Their work is similar to ours in the way compound nouns are identified. Lin
et al. [312] summarize a workshop on N-gram analysis and provide a few tools for working with
N-gram data and three use cases for information extraction from N-grams (gender and animacy
knowledge discovery, noun phrase parsing, supervised classifiers).

There are several ways to determine the degree of semantic relatedness between identified
terms in natural language texts. The relationship is often derived from statistics of word collo-
cations [211], as introduced in Section 2.4.2. Other approaches use external knowledge sources
to compute semantic relatedness. A very popular approach [313] is the use of Wikipedia-based
explicit semantic analysis, and other works combine WordNet concept hierarchies and collabora-
tively constructed knowledge sources [314]. Zhang et al. [315] provide a survey on methods of
lexical semantic relatedness. Comparison was very difficult because of different datasets, different
background knowledge sources and different evaluation methods. They point out that general
purpose knowledge sources (e.g., Wikipedia, WordNet, Wiktionary) have limited coverage of spe-
cialized vocabularies, and that there is a gap between the research of lexical semantic relatedness in
general, in the biomedical domain and the application of general methods in other domains. Word
context-based methods are a good starting point for measuring semantic relatedness as they do
not require any additional background information. As described in Section 1.2.3 and confirmed
by the aforementioned study, general purpose background sources are not sufficient to be applied
to domain modeling scenarios in virtually every domain.

4.2.2 Word Embeddings

Traditional vector space models were predominantly used for word similarity tasks, but they
faced challenges with sparse vector representations, dimensionality reduction, and scalability in
using large corpora. In late 2013, work on neural network word embeddings [214, 215] (see also
Section 2.4.4) has advanced a series of researches that surpassed the state-of-the-art in several
natural language processing tasks, such as word similarity, part-of-speech tagging, word analogy,
and text classification. The main purpose of these models and follow-up work is the syntactic and
semantic analysis of the lexical meaning [213] to serve as background knowledge for NLP tasks.
These types of word embeddings are optimized for fast training and low-cost vector operations (e.g.,
to calculate cosine similarity between word vectors), resulting in dense low-dimensional vectors
with a user-defined fixed number of dimensions and vocabulary size. At first glance, neural word
embeddings seem to be a good source for related terms for domain models, but there are some
points in which they are very different from what we need. In the following, we will discuss these
differences by analyzing four recent major approaches in this field:

76

• Word2Vec (2013) [215] - Distributed representations of words: A major breakthrough in
neural word embeddings based on large input data.

• GloVe (2014) [316] - Global vectors for word representation: A count-based model using
word-word co-occurrences.

• DEPS (2014) [317] - Dependency-Based Word Embeddings: A model that uses non-linear
dependencies as context.

• Fasttext (2018) [318] - Word embeddings in several languages: Efficient text classification
and representation learning.

Term Identification. All approaches are mainly concerned with word vector representations
based on whitespace delimited strings. That is, all models learn vector representations for single
tokens (unigrams) only. These tokens can be anything that occurs in a corpus: nouns, adjectives,
verbs and other word classes, punctuation, URLs, numbers, etc. (e.g., they contain vectors for
words like ”###-####”, ”(309)”, or ”ImageJPG”). None of the works directly incorporates
multiword expressions1. Word2Vec uses a trick while the corpus is preprocessed to integrate
multiword terms. Phrases are identified based on a ratio between bigram and unigram frequencies.
The spaces in these phrases are replaced by an underscore so that they are treated as individual
tokens during the training phase. This trick requires several passes through a corpus and is
in fact a simplified approach to mutual information. Although Fasttext is based on Word2Vec,
none of the published models contain multiword terminology. In contrast, SemNet considers
multiword expressions to be the number one priority, as they are very important for domain-
specific vocabularies.

Vocabulary Size. Learned word representations normally use a user-defined vocabulary size
by taking the n most frequent words of the corpus. The published pre-trained models of the
respective approaches provide arbitrary vocabulary sizes: Word2Vec reports on 692K words [215]
and publishes a model with 3M terms (containing multiword strings produced with the trick de-
scribed before)2. The GloVe vectors have a vocabulary size of 400K or 2.2M depending on the
corpus3 used. Fasttext uses 1M (Wiki-News) and 2M (Common Crawl) word vocabularies4. The
authors of DEPS did not publish any pretrained models. As shown before, these vocabularies
contain any type of tokens. This also includes all plural and tense variations. Considering uni-
grams, a threshold of 1M or 2M words is absolutely feasible. Including more words would only
introduce noise vectors. We analyzed the vocabularies of all available models by POS tagging
each vocabulary entry and sorting out lines that contain numbers and special characters. We keep
singular normal nouns (excluding proper nouns) and adjective noun combinations (in the case
of Word2Vec) as we do in SemNet. The proportion of nouns in the respective word embeddings is
on average 26%. SemNet contains 5.9M terms (5.8M singular nouns and singular adjective noun
combinations and 0.1M verbs). Table 4.1 provides an overview.

Dimensionality. As mentioned at the beginning of this section, word embeddings are opti-
mized for computational inexpensive vector operations to effectively compare words in NLP tasks.
Consequently, all approaches aim to produce low-dimensional word vectors, either by directly
learning dense representations or by dimensionality reduction in count-based models. Literature
describes practical settings with sizes between 50 and 1000 dimensions [214]. The use of these
models in a retrieval context (top-N recommendations) is rather ineffective, since for every query
the entire vocabulary must be iterated, all similarities must be calculated, and then the closest
Nth words are returned (see, for example, distance5 implementation of Word2Vec). However, Sem-

1However, the models contain hyphenated words because they are not split during tokenization and therefore
treated as a single token. Space-separated MWEs are not included. Mikolov et al. [318] state ”Directly incorporating

the N-grams in the models is quite challenging as it clutters the models with uninformative content due to huge

increase of the number of the parameters.”
2https://code.google.com/archive/p/word2vec/
3https://nlp.stanford.edu/projects/glove/
4https://fasttext.cc/docs/en/english-vectors.html
5https://github.com/tmikolov/word2vec/blob/master/distance.c

77

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html
https://github.com/tmikolov/word2vec/blob/master/distance.c

Net stores terms and their relationships as a graph so that top-N related terms can be retrieved
directly.

Syntactic Information. Continuous vector representations created by Word2Vec, Fasttext,
and GloVe are based on the linear context of words, such as those used by the CBOW and
SkipGram models. Although the syntactic context is captured to some extent by these models,
the actual syntactic information of the words is not taken into account. Dependency-Based Word
Embeddings (DEPS) [317] use another context model that considers the dependency structure
of sentences in a nonlinear way for vector representation learning. The resulting models capture
the similarity between words (functional similarity) better than the relatedness between words
(topical / domain similarity). This is also confirmed by a recent study on various dependence-
based approaches [319]. Since our goal is to extract related terms in favor of domain similarity,
these approaches do not help. Additionally, the resulting models are a purely mathematical
representation of words as vectors that no longer contain syntactic information. The resulting
SemNet model distinguishes between noun phrases and verbs and also provides subject-predicate-
object structures for retrieval.

Word2Vec
GNews
[215]

GloVe
Wiki/Giga
[316]

GloVe
CCrawl
[316]

Fasttext
Wiki/News
[318]

Fasttext
CCrawl
[318]

SemNet
N-Gram
[320]

Terms Words+
Phrases6

Words Words Words Words Words+
MWEs

Voc. Size 3M 400K 2.2M 1M 2M 5.9M

Noun
Terms7

462K
(˜15%)

234K
(˜58%)

599K
(˜30%)

277K
(˜27%)

605K
(˜30%)

5.8M
(˜99%)

Dimension 300 50/100/300 300 300 300 n/a

Syntactic
Info

n/a n/a n/a n/a n/a Nouns,Verbs
SPO

Table 4.1: Comparison of Recent Word Embedding Approaches to SemNet

To summarize, none of the current word embedding models provides enough information that
is directly usable in a domain modeling context and none of the approaches is able to generate
models preserving syntactic information of words or phrases.

4.3 Extraction Process

4.3.1 Overview

To achieve our intended semantic modeling support with automated model element suggestions,
we consider the following: We require a dictionary of terms that is big enough to cover a large
portion of domains with all possible terms that are used in those domains. The terms should be
interconnected if they are semantically related, thus constituting a semantic network. The degree
of relatedness should be quantified to enable ranking of related terms. It is required to identify
multi-word noun terms [321] and verbs as well as binary and ternary relations between them. The
network should allow for retrieving related terms for a single term and for multiple terms at once.
Figure 4.1 gives an overview of our approach.

6Phrases were obtained by a preprocessing trick using merged single words.
7Proper Nouns / Named Entities not included

78

Text

Corpus

N-

_`ab
de

fghijlm(1)

N-npqr
stqtu

fgvwmxl

(2)

N-

_`ab
de

N-_`ab
de

zm{j|m }
~��

(3)
N-_`ab
��� de

����
N-_`ab
��� de

(5)
�qtt�p���lmv{

fgvlm�l

��`b�
N-_`ab
��� de

���� ��`b�
N-_`ab
��� de

�gxh����m

(4)

�gxh����m

(4)

�v����m
��llmxv�

��`b
���a����
de

�v����m
Co-g||jxxmv|ms

(7)

�v����m
Co-g||jxxmv|ms

(7)

��`b
���a����
de

��b���

(6)
���� ��`b
���a����
de

��lm ¡¢le
(8)

fghijlm
£m¤¢lm¥�mss

(9)

Figure 4.1: Procedure of creating a semantic term network based on natural language analysis

(1) The approach relies on automated analysis of natural language text to extract information
about domain terms and their relationships. Input to the analysis process is a large text corpus
of which frequencies for words and word sequences (N-grams) are determined. We do not build
the text corpus ourselves but rely on an existing one. Nevertheless, all methods described in this
chapter are applicable to other text datasets.

(2) We make use of the existing Google Books N-gram dataset, described in Section 4.3.2. First
step of the preprocessing is the transformation of N-gram statistics delivered as plain text files
into queryable databases (Section 4.3.3).

(3) We apply filtering to exclude useless N-grams (Section 4.3.4) and perform part-of-speech
tagging on the reduced dataset (Section 4.3.5).

(4) Last preprocessing step is the normalization of word variants (Section 4.3.6).

(5) In parallel, we apply heuristic methods to extend the limited context of five words in the
N-gram dataset to be able to extract longer domain-specific terms (Section 4.3.10).

(6) On both the normal and extended dataset we conduct pattern analysis and derive a set of
syntactic patterns to extract terms (Section 4.3.7).

(7) The patterns are input to a co-occurrence analysis to extract term-term relationships (binary
and ternary) for nouns and verbs (Section 4.3.8).

(8) Both resulting datasets of term relationships are aggregated separately (Section 4.3.8.2) and
integrated (Section 4.3.10.3).

(9) Finally, based on term frequencies and statistical semantics, degrees of relatedness for the
complete semantic network are computed (Section 4.3.9) and a queryable database is constructed
(Section 4.3.11). SemNet is a large-scale graph of terms with weighted edges denoting the degree
of relatedness, and it provides several interfaces for querying.

4.3.2 Google Books N-Gram Dataset

The Google Books project aims at providing a searchable digital library of a huge amount of books.
Since 2004, Google Inc. has digitized over 15 million books [322] for full text book search on the
web using optical character recognition. Most of the books are provided by university libraries or
publishers who participate in the partner programs.

79

Google selected a subset of approximately 5 million books from the years 1500 to 2008 and
built a text corpus of roughly 500 billion words in several languages for quantitative text analysis.
Most of the corpus is in English (361 billion words), other languages are: French (45 billion),
Spanish (45 billion), German (37 billion), Chinese (13 billion), Russian (35 billion), and Hebrew
(2 billion) [322].

The complete natural language text was processed with an N-gram analysis that counts how
often a certain word or word sequence occurs within the corpus. The resulting dataset includes
word frequencies for all 1,2,3,4 and 5-grams that occurred at least 40 times. The N-gram frequen-
cies are separated by years of publication allowing an analysis of word evolutions through time8.
The dataset is split into languages, and can be downloaded9 as tab-separated plain text files.

Different versions of the N-gram dataset exist. The first release of the dataset was published in
2009 [322]. It contains the 1,2,3,4 and 5-grams of the original text corpus, the publication year in
which the N-grams occurred, the absolute frequencies of the N-grams, and in how many distinct
books each N-gram occurred.

The second version of the N-gram dataset was published in the year 2012 [281] with several
enhancements. Quality of the dataset was improved using revised OCR technology and more
precise tokenization. Additionally, the new release provides syntactic annotations for each N-
gram. These annotations include part-of-speech tags, sentence boundaries, and word dependency
relations. The POS tags used in the dataset conform to a language independent tag set with 12
different lexical categories (nouns, verbs, adjectives, adverbs, pronouns, determiners and articles,
prepositions and postpositions, numerals, conjunctions, particles, punctuation marks, and tags for
all remaining word categories) [183].

In 2013 another dataset was released that is based on the English Google Books corpus [323].
It focuses on dependency tree fragments that were obtained by parsing the original sentences. The
work includes more details than the syntactic annotations. In contrast to the other datasets the
structure of the data is completely different because of the labeled dependencies between words.

When we started with our work on terminology extraction, we worked with the 2009 dataset
and then later switched to the 2012 dataset for quality reasons. The descriptions in this chapter
are based on the English all dataset, version 20120701. It was derived from the English Google
Books corpus (approximately 361 billion words in total). The dataset is 2.5 terabytes in size and
contains over 61 billion lines of text.

Table 4.2 shows the structure of the tab-separated files. The dataset contains N-grams with
syntactic annotations as well as without annotations. As an example we show fivegrams. Most of
our work is based on the fivegrams, because they offer the largest context for analysis. The first part
of the table shows fivegrams without annotations. Each line represents the occurrences (match
count) of the respective fivegram in the respective publication year and in how many different
books it was found (volume count). The Second part of the table shows example fivegrams with
part-of-speech annotations. The tags are concatenated to each of the words. Each N-gram in
the dataset is contained at least twice (once without annotations and at least one variant with
annotations). N-grams without annotations represent the occurrences regardless of the lexical
categories. The same N-grams can have different syntactic annotations in different contexts. The
last two segments of the table show two different versions of the fivegram ”the doctor and the
patient”. In a few contexts the word patient has an adjective role.

We decided to use the Google Books N-Gram dataset because it covers an extremely large
variety of literature and terminology in almost every domain. It allows an analysis of terminology
in great breadth.

4.3.3 Dataset Conversion

In this section, we describe the conversion process of the N-gram dataset plain text files into a
relational database. We decided to conduct the transformation for the following reasons: (1) Size

8Evolution of words over time can be explored under http://books.google.com/ngrams
9The dataset can be downloaded at http://books.google.com/ngrams/datasets

80

http://books.google.com/ngrams
http://books.google.com/ngrams/datasets

N-Gram Year Match
Count

Vol.
Count

a doctor or a nurse 1998 116 113
a doctor or a nurse 1999 86 80
a doctor or a nurse 2000 110 104
...

the doctor and the patient 2006 323 253
the doctor and the patient 2007 375 270
the doctor and the patient 2008 216 183

a DET doctor NOUN or CONJ nurse NOUN practitioner NOUN 2002 13 13
a DET doctor NOUN or CONJ nurse NOUN practitioner NOUN 2003 18 18
a DET doctor NOUN or CONJ nurse NOUN practitioner NOUN 2004 33 13
...

the DET doctor NOUN and CONJ the DET patient NOUN 2006 313 244
the DET doctor NOUN and CONJ the DET patient NOUN 2007 366 263
the DET doctor NOUN and CONJ the DET patient NOUN 2008 211 179
...

the DET doctor NOUN and CONJ the DET patient ADJ 2006 10 10
the DET doctor NOUN and CONJ the DET patient ADJ 2007 9 9
the DET doctor NOUN and CONJ the DET patient ADJ 2008 5 5

Table 4.2: Structure of the Google Books N-gram dataset files. Examples of fivegrams without
and with syntactic annotations

reduction: The huge size of the input files makes it difficult to analyze and process the data. Just
extracting and copying the data files already takes days10. (2) Year aggregation: Our analysis
does not require the separation into publication years. In order to make statements about the
semantic relatedness between terms it is necessary to analyze total frequencies. (3) Querying: The
conversion allows easier querying of the N-gram data to conduct manual pre-analysis steps, such
as finding patterns and creating samples.

The conversion process is split into two steps. We first create a database containing an index
of all possible text tokens (the words) using the unigrams of the Google Books Ngram dataset.
Secondly, the other N-grams are converted into databases using the unigram index. As a result it
was possible to reduce the size of the data by two orders of magnitude. The size reduction also
allows us to perform most of the analysis tasks in the main memory.

Most of our subsequent analysis steps are based on the fivegrams of the dataset. In the following
sections we mainly describe the steps and algorithms using examples of fivegrams.

4.3.3.1 Database Backend

We use an SQLite11 database backend to store all N-gram information. Although the database sys-
tem is not optimized for processing huge datasets it offers several important features. A complete
database with all its metadata is stored in a single file. It is not necessary to install a database
server. The database client directly accesses the database files. Database APIs are available for a
variety of programming languages. Furthermore, SQLite offers a very easy mechanism to create,
load and process in-memory SQL databases, which is important for us to reduce processing time.

10For example, the conversion process of the 2-gram data files (127 gigabytes in compressed format, roughly 843
gigabytes raw text files) took 16 hours.

11http://www.sqlite.org/

81

http://www.sqlite.org/

4.3.3.2 Unigrams

Figure 4.2 depicts the conversion of the unigram data file. The text file is parsed, years and volume
counts are omitted, and match counts are aggregated. Each word together with its total corpus
frequency is inserted into the unigram database table. The resulting table contains 10,254,948
distinct words/tokens. 385 megabytes disk space are required to store the database including an
index on the words. Listing 4.1 shows the SQL statements used to create the unigram database
table.

doctor 1515 2 1

doctor 1520 4 1
...

doctor 1801 3268 384

doctor 1802 1865 259
...

doctor 2007 767352 78383

doctor 2008 1011370 104368
...

nurse 2006 386820 46160

nurse 2007 377766 50375

nurse 2008 464137 72432
...

...

(doctor, 19086489)

(nurse, 10379228)

id text frequency

9 a 7,083,003,595
...

38 this 1,423,199,366
...

744 patient 55,138,612
...

2313 doctor 19,086,489
...

4038 nurse 10,379,228
...

10128 hypertension 3,201,050
...(... , ...)

Figure 4.2: Process of the unigram data aggregation and database table creation (10 million unique
tokens)

1 CREATE TABLE words (id INTEGER PRIMARY KEY, text TEXT, f r equency INTEGER) ;
2 CREATE INDEX wordtext on words (text ASC) ;

Listing 4.1: Create table statements for the unigram database table

The conversion process turned the unigram text file with 1.4 billion lines of text (28 gigabytes)
into a database with roughly 10 million distinct tokens (385 megabytes). Now we can determine the
total number of tokens in the original text corpus by summing up the individual token frequencies:
935 billion tokens existed before the N-gram analysis. This value includes the number of spaces
(468 billion), thus resulting in approximately 467 billion tokens (including punctuation).

4.3.3.3 Fivegrams

In this section we describe the conversion of the fivegram dataset text files. The dataset contains a
mixture of two different fivegram variants: with and without part-of-speech tags. In the resulting
fivegram database we include all fivegrams together with their part-of-speech tags. Table 4.3 lists
all possible tags of the general Google part-of-speech tagset. The tagset itself is also stored in the
database.

ID Tag Explanation ID Tag Explanation

1 NOUN Nouns, proper nouns 7 ADP pre- and postpositions
2 VERB Verbs 8 NUM Numerals
3 ADJ Adjectives 9 CONJ Conjunctions
4 ADV Adverbs 10 PRT Particles
5 PRON Pronouns 11 . Punctuation marks
6 DET Determiners, articles 12 X Other

Table 4.3: Universal language independent part-of-speech tagset used by the Google Ngram
dataset [281]

82

Listing 4.2 shows the SQL statements used to create the fivegram and the tagset database
tables. Each word of a fivegram is stored as a separate foreign key reference (w1-w5) to the
unigram table and each tag with a foreign key reference (p1-p5) to the tagset table. Please note
that we do not use indices on the fivegrams so far, because at this stage of the analysis process
we just require sequential processing of the fivegrams.

1 CREATE TABLE f ivegramswithpos
2 (i d INTEGER PRIMARY KEY, w1 INTEGER, w2 INTEGER,
3 w3 INTEGER, w4 INTEGER, w5 INTEGER,
4 p1 INTEGER, p2 INTEGER, p3 INTEGER, p4 INTEGER,
5 p5 INTEGER, f INTEGER) ;
6 CREATE TABLE tags (id INTEGER PRIMARY KEY, tag TEXT) ;
7 CREATE INDEX tagindex on tags (tag ASC) ;

Listing 4.2: Create table commands for the tagset database table and the fivegram database table

The conversion process of the fivegrams as shown in Figure 4.3 is similar to the unigram
conversion. Occurrences of the same fivegrams in different years are aggregated. The part-of-
speech tags are cut off from the words and stored separately. The resulting table only contains
identifiers of the respective words and tags. 59.8 billion lines of text (2.4 terabytes) have been
processed. The created database contains 704,355,409 fivegrams and requires 23 gigabytes disk
space.

...

a_DET doctor_NOUN or_CONJ nurse_NOUN practitioner_NOUN 2002 13 13

a_DET doctor_NOUN or_CONJ nurse_NOUN practitioner_NOUN 2003 18 18

a_DET doctor_NOUN or_CONJ nurse_NOUN practitioner_NOUN 2004 33 13
...

the_DET doctor_NOUN and_CONJ the_DET patient_NOUN 2006 313 244

the_DET doctor_NOUN and_CONJ the_DET patient_NOUN 2007 366 263

the_DET doctor_NOUN and_CONJ the_DET patient_NOUN 2008 211 179
...

the_DET doctor_NOUN and_CONJ the_DET patient_ADJ 2006 10 10

the_DET doctor_NOUN and_CONJ the_DET patient_ADJ 2007 9 9

the_DET doctor_NOUN and_CONJ the_DET patient_ADJ 2008 5 5
...

(a doctor or nurse practitioner, DET NOUN CONJ NOUN NOUN, 288)

(the doctor and the patient, DET NOUN CONJ DET NOUN, 8339)

(the doctor and the patient, DET NOUN CONJ DET ADJ, 293)

id w1 w2 w3 w4 w5 p1 p2 p3 p4 p5 f

12449732 9 2313 29 4038 10601 6 1 9 1 1 288
...

607028020 3 2313 6 3 744 6 1 9 6 3 293
...

621711520 3 2313 6 3 744 6 1 9 6 3 8339
...

Figure 4.3: Process of the fivegram data aggregation and database table creation (700 million
unique fivegrams)

83

4.3.3.4 Fivegram Queries

At this stage of the analysis process, it is already possible to query the N-gram database for specific
phrase fragments. Listing 4.3 shows how to determine groups of fivegrams that contain the word
doctor and the word nurse at certain positions. First, we retrieve the identifiers of both words.
After that, we match all the fivegrams with the words on second and fourth positions. The results
are sorted by decreasing frequency and limited to the first ten rows.

1 SELECT ∗ FROM words WHERE text = ’ doctor ’ or text = ’ nurse ’ ;
2 −−> 2313 | doctor |19086489
3 −−> 4038 | nurse |10379228
4

5 SELECT words1 . text , words2 . text , words3 . text , words4 . text , words5 . text , f FROM
fivegramswithpos

6 LEFT JOIN words AS words1 ON words1 . i d = w1
7 LEFT JOIN words AS words2 ON words2 . i d = w2
8 LEFT JOIN words AS words3 ON words3 . i d = w3
9 LEFT JOIN words AS words4 ON words4 . i d = w4

10 LEFT JOIN words AS words5 ON words5 . i d = w5
11 WHERE w2 = 2313 and w4 = 4038
12 ORDER BY f DESC LIMIT 10 ;

Listing 4.3: Example query of the fivegram database to find fivegrams of specific words at specific
positions. Please note that for reasons of space the select and join statements for the tags have
been excluded

w1 w2 w3 w4 w5 p1 p2 p3 p4 p5 f

a doctor , nurse , DET NOUN . NOUN . 2520
, doctor , nurse , . NOUN . NOUN . 1924
your doctor or nurse if PRON NOUN CONJ NOUN ADP 1734
your doctor , nurse , PRON NOUN . NOUN . 1697
the doctor , nurse , DET NOUN . NOUN . 1693
a doctor or nurse . DET NOUN CONJ NOUN . 1340
the doctor or nurse . DET NOUN CONJ NOUN . 1202
your doctor or nurse . PRON NOUN CONJ NOUN . 1111
Your doctor or nurse will PRON NOUN CONJ NOUN VERB 1083
a doctor or nurse , DET NOUN CONJ NOUN . 1041

Table 4.4: Result of the fivegram query, showing the ten most frequent fivegrams that contain
doctor and nurse at the second and fourth position, respectively

4.3.4 Dataset Reduction

For further analysis steps we built a stopword list that contains the most frequent non-noun and
non-verb words. It is required to identify fivegrams that contain no information for our purposes
and to identify words in multi-word expressions that were incorrectly tagged. The list was built by
using the 1000 most frequent unigrams and by manually removing all nouns and verbs from it. The
resulting list consists of about 500 distinct tokens, mainly comprising punctuation, conjunctions,
pronouns, determiners and particles. Additionally to the list we implemented a stopword function
that eliminates words that contain special characters (e.g., numbers, non-alphabetic characters).

The N-gram dataset was created using purely statistical means and therefore contains much
information that is not relevant for extracting the domain terminology. Our analysis process
aims to find terms that are expressed with adjectives, nouns and verbs. We process the complete
fivegram database by iterating every fivegram and apply two rules: (1) If the fivegram contains
four or five stopwords, it is discarded. (2) If it does not contain a noun, it is discarded. With
these heuristics, we were able to reduce the dataset to 60 percent relevant fivegrams.

84

4.3.5 Part-Of-Speech Tagging

Although the Google N-gram dataset already contains part-of-speech tags, we performed part-of-
speech tagging of the fivegram sentence fragments. There are two reasons why the general Google
tagset is not sufficient for our purposes. First, it does not differentiate between proper nouns and
normal nouns. This is an important issue, because we address modeling support on conceptual
level and concepts are usually expressed as nouns or noun phrases using normal nouns [253].
Secondly, the Google tagset also does not differentiate between different word forms (e.g., plural
nouns, verbs in the third person form or gerunds). In order to aggregate word variations it is
required to reduce inflected nouns and verbs to their root form using stemming. This process
requires the correct lexical category of the words.

ID Tag Explanation ID Tag Explanation

2 NN Noun, singular or mass 30 VBP Verb, non-3rd person
singular present

11 NNS Noun, plural 38 VBZ Verb, 3rd person
singular present

9 NNP Proper noun, singular 1 JJ Adjective
33 NNPS Proper noun, plural 13 JJR Adjective, comparative
36 VB Verb, base form 12 JJS Adjective, superlative
17 VBD Verb, past tense 44 : Colon, hyphen, etc.12

19 VBG Verb, gerund or present
participle

32 SYM Symbol

25 VBN Verb, past participle 10 FW Foreign word

Table 4.5: Excerpt of the Penn Treebank Tagset used by the Stanford Part-Of-Speech Tagger

The part-of-speech tagging of the fivegrams was performed using the Stanford Log-linear Part-
Of-Speech Tagger13 of the Stanford NLP toolkit [184]. The Stanford POS tagger uses the Uni-
versity of Pennsylvania (Penn) Treebank Tagset [182]. The tagset includes 46 different POS tags.
Table 4.5 shows an excerpt of the tags that are relevant for our work.

The Stanford POS tagger includes several language-dependent tagger models. We use the
English model that incorporates left-to-right dependencies and distributional similarity features
(english-left3words-distsim.tagger) to tag the English fivegrams. The tagging process is as follows:
We iterate through the reduced fivegram database table and rebuild the textual sentence frag-
ments using the unigrams. Using the word and sentence structure of the tagger the fivegram text
is processed by MaxentTagger component delivering the more detailed Penn Treebank tags. After-
wards, the tags are replaced in the database, as shown in Figure 4.4. The precise tags now allow
the distinction between the different word forms that we use during the normalization procedure
described in the next section.

4.3.6 Normalization

Words and multi-word expressions have different spellings in terms of their functions, positions
in the sentence, and dependencies on other words. Normalization is the process of reducing the
word variants to reduce the number of terms in the analysis result that mean the same but are
spelled differently. We mainly perform normalization to eliminate capitalization and to determine
the base forms of nouns, verbs, and adjectives.

We iterate through the fivegram database table and apply the following rules to each token
(word) of each fivegram: (1) Unchanged words: Proper nouns are not touched, as they are usually

12Please note that the original definition of this tag only includes colons and semi-colons, but in practice it
captures also hyphens and slashes. We use this tag to identify hyphenated words.

13The POS tagger can be downloaded at http://nlp.stanford.edu/software/tagger.shtml. We used version
3.5.1 of the tagger and its accompanied tagging models.

85

http://nlp.stanford.edu/software/tagger.shtml

doctor and nurse at the NOUN CONJ NOUN ADP DET

doctors and their patients . NOUN CONJ PRON NOUN .

the patient consults a doctor DET NOUN VERB DET NOUN

doctor and nurse at the NN CC NN IN DT

doctors and their patients . NNS CC PRP$ NNS .

the patient consults a doctor DT NN VBZ DT NN

Figure 4.4: Part-of-speech tagging of the fivegrams, replacing the general Google tags with the
more detailed Penn Treebank tags

written in uppercase. Words with more than one uppercase letter are not changed, since they
usually refer to acronyms (except for plural variants, see the fourth rule). Stopwords are not
changed. (2) Lowercasing: Adjectives (POS tags beginning with JJ), verbs (POS tags beginning
with VB), and normal nouns (POS tag is NN or NNS) are lowercased. (3) Word forms: Plural
nouns are reduced to their singular form. Verbs that use different tense, person or number are
reduced to their base form. Comparative and superlative adjectives are reduced to their normal
form. We use the stemming feature of the morphology component of the Stanford NLP kit for
word form reduction. (4) Special Rules: We normalize the two different versions of a hyphen (- and
–) to a single hyphen character. If an acronym uses a plural-s (all characters are uppercase except
the s-suffix), it will be truncated. Figure 4.5 shows examples of the respective normalization rules.

Doctor of ¦§¨©ª«ª¬§ ¨® ¯§°±¨«²³ NN IN NN IN NN

doctors and their patients . NNS CC PRP$ NNS .

the patient consults a doctor DT NN VBZ DT NN

doctor of philosophy in chemistry NN IN NN IN NN

doctor and their patient . NN CC PRP$ NN

the patient consult a doctor DT NN VB DT NN

X -- ray diffraction pattern NN : NN NN NN

x - ray diffraction pattern NN : NN NN NN

Figure 4.5: Examples of the applied normalization rules on the fivegrams

86

4.3.7 Syntactic Patterns

Terminology is expressed using single words or multi-word expressions. In order to find terms in N-
gram natural language fragments we analyze sequences of part-of-speech tags [282]. The analysis
is performed in two steps. (1) We first determine the most frequent part-of-speech patterns of
terminology used in several existing dictionaries and ontologies. (2) We then complement the
patterns by patterns specific to the N-gram dataset and formulate a set of extraction rules.

4.3.7.1 Automated Noun Pattern Analysis

First, we examine several existing English dictionaries, lexical databases, vocabularies and ontolo-
gies on how concept names, class names and noun terminology are expressed. The most important
resource is the lexical database WordNet [108], because it allows to retrieve English terminology
that is already classified as nouns, verbs and adjectives. We extract all nouns excluding those
that refer to instance synsets (e.g., city names). The complete list of noun terms contains 104,182
entries. We also analyze these databases: DBpedia ontology (3,475 classes and properties), Open-
Cyc (108,937 classes), Schema.org (628 classes), ConceptNet (2.3 million concepts), and Linked
Open Vocabulary (48,005 classes). The part-of-speech tags are determined by tagging each term
of the respective resource using the Stanford POS tagger. Most of the terms consist of only one or
two words. The results of the tagger have to be treated with care, because the missing context (a
sentence) leads to imprecise tagging results. We cross-validated the tagger results by looking up
each term in the respective N-gram dataset and retrieved their most frequent part-of-speech tags.

Table 4.6 summarizes the results of the automated part-of-speech pattern analysis. For each
database we provide the number of analyzed terms and the ten most frequent syntactic patterns.
The following observations with respect to the obtained patterns have been made.

4.3.7.2 Dominant patterns

The most obvious result of automated tagging is that the most frequent syntactic patterns are
a single noun, two subsequent nouns and an adjective followed by a noun. On average 61.3%
of the terms conform to these three patterns. The percentage of these patterns in OpenCyc
and ConceptNet is comparatively low because these two databases tend to have more concepts
with detailed, long labels (e.g., OpenCyc includes a lot of labels such as ”formation of symbiont
germ tube hook structure on or near host”). Additionally, ConceptNet includes a large number
of concepts that are described with short natural language phrases, not only referring to noun
terminology. (e.g., ”more important than others to remember”). Hence, the distribution of the
patterns is more diverse.

4.3.7.3 Important patterns

In the top ten list of patterns, additionally important patterns appear that have up to four parts.
These include noun combinations up to four nouns and adjective-noun combinations up to four
parts. Another noteworthy pattern is a noun followed by a preposition followed by a noun. This
pattern refers to terms such as date of birth or master of science. Variations are two nouns or
an adjective and a noun after the preposition. The preposition pattern unfortunately has some
drawbacks. It also extracts multi-word terms that are idioms used in almost every context (e.g.,
number of doctors, or part of life). Nevertheless, these combinations can be sorted out using
statistical measures applied later on.

4.3.7.4 Impractical patterns

A fairly common tag is a single adjective. This is obviously a wrong POS pattern. The first
reason for this result is the missing context for the POS tagger, resulting in incorrect tags for
homonymous words, such as adjectives and nouns having the same spelling. Surprisingly, the
single adjective is the fourth most frequent pattern in the set of WordNet nouns. The reason is

87

WordNet DBpedia
Noun synset members (104,182) Class & property labels (3,475)

1 [Noun] 44,3% [Noun] 31,6%
2 [Noun] [Noun] 27,1% [Noun] [Noun] 23,5%
3 [Adjective] [Noun] 12,9% [Adjective] [Noun] 11,9%
4 [Adjective] 2,2% [Noun] [Noun] [Noun] 4,5%
5 [Verb gerund] 1,3% [Noun] [Prepo.] [Noun] 4,5%
6 [Verb gerund] [Noun] 1,1% [Adjective] [Noun] [Noun] 3,2%
7 [Noun] [Noun] [Noun] 1,0% [Verb gerund] [Noun] 1,6%
8 [Noun] [Prepo.] [Noun] 0,9% [Adjective] 0,8%
9 [Adjective] [Noun] [Noun] 0,9% [Noun] [Adjective] [Noun] 0,8%
10 [Foreign Word] 0,8% [Noun] [Prepo.] [Adj.] [Noun] 0.8%

Schema.org OpenCyc
Class names (628) Class labels and aliases (108,937)

1 [Noun] [Noun] 37.7% [Noun] [Noun] 15.1%
2 [Noun] 20.2% [Noun] 13.0%
3 [Adjective] [Noun] 10.8% [Adjective] [Noun] 8.3%
4 [Verb] [Noun] 9.7% [Noun] [Noun] [Noun] 7.1%
5 [Noun] [Noun] [Noun] 5.9% [Adjective] [Noun] [Noun] 4.1%
6 [Adjective] [Noun] [Noun] 4.1% [Noun] [Noun] [Noun] [Noun] 3.0%
7 [Verb gerund] [Noun] 1.3% [Noun] [Adjective] [Noun] 1.6%
8 [Noun] [Conj.] [Noun] [Noun] 1.0% [Adj.] [Noun] [Noun] [Noun] 1.4%
9 [Noun] [Noun] [Noun] [Noun] 0.8% [Verb gerund] 1.3%
10 [Noun] [Conj.] [Noun] 0.8% [Adjective] [Adjective] [Noun] 1.2%

ConceptNet Linked Open Vocabulary
Concept names (2,315,095) Class labels (48,005)

1 [Noun] [Noun] 28.3% [Noun] 34.5%
2 [Noun] 20.7% [Noun] [Noun] 16.3%
3 [Adjective] [Noun] 6.5% [Noun] [Noun] [Noun] 6.1%
4 [Noun] [Noun] [Noun] 6.1% [Adjective] [Noun] 5.1%
5 [Adjective] 2.6% [Adjective] [Noun] [Noun] 1.7%
6 [Adjective] [Noun] [Noun] 1.8% [Adjective] 1.6%
7 [Noun] [Prepo.] [Noun] 1.6% [Noun] [Noun] [Noun] [Noun] 1.6%
8 [Noun] [Adjective] [Noun] 1.3% [Noun] [Prepo.] [Noun] 1.5%
9 [Noun] [Noun] [Noun] [Noun] 1.3% [Verb] [Noun] 1.4%
10 [Verb] [Noun] 1.1% [Verb] [Noun] [Noun] 0.7%

Table 4.6: Results of the automated syntactic analysis of terms in lexical and semantic databases

88

that WordNet contains a large number of synsets that refer to nationalities (e.g., synset {French})
and to languages (e.g., synset {German language, German}), that cannot be distinguished from
the respective adjective by the tagger. Furthermore, a lot of synsets contain synonyms that are
an adjective short form of the actual noun (e.g., Abyssinian cat and Abyssinian).

The verb in gerund form and the gerund followed by a noun are also part of the top ten list. In
general, these patterns are not wrong, but difficult to apply for extraction. For example answering
machine would be a correct term with respect to our extraction goals, but in he enjoys playing
football the extraction would be incorrect. In case there is enough context available in front of the
term the extraction of the latter example could be avoided with exception rules.

4.3.7.5 Special Noun Patterns

The Google Ngram dataset was created applying a tokenization that separates hyphenated words
into several single tokens (e.g., first-aid kit will be represented by a four-gram {first, -, aid,
kit}). Patterns for these cases could not be detected by our automated pattern analysis, because
hyphenated words are usually treated as single nouns. The extraction of these terms from the
fivegrams requires a few extra patterns. The part-of-speech tagging of the separated hyphenated
words results in the detection of single lexical categories separated by punctuation. For ”first -
aid kit” the categories are [Adjective] [Punctuation] [Noun] [Noun]. A few variants are possible
with respect to how the fivegrams are classified (noun or adjective-noun combinations after the
hyphen). If the part before the hyphen is just one or two characters long (e.g., {x, -, ray}), it will
be tagged as a symbol. Additional patterns are required for these cases.

4.3.7.6 Verb Patterns

The goal of this thesis is not only to identify noun terminology, but also to identify relationships
between nouns and verbs to suggest relationship names in a domain model. Therefore, part-of-
speech patterns for verbs are required as well. The extraction is straightforward: patterns of part-
of-speech tags for single verbs and sequences of verbs are matched with the N-grams. Individual
verbs are extracted directly. In sequences of verbs, the last verb is always retrieved. This simple
and effective heuristic extracts in almost all cases the verb that carries the semantic content of the
phrase and skips modal and other auxiliary verbs as well as auxiliary verbs required for participles
or passive constructs (e.g., in the fivegram the doctor has been consulted the normalized noun-verb
relationship {doctor,consult} is extracted.

4.3.7.7 Implemented Extraction Patterns

In this section we present the complete set of part-of-speech patterns that was built based on the
previously described pattern analysis. As described in Section 4.3.5, the reduced fivegram dataset
was tagged using the Penn Treebank tagset. Table 4.7 summarizes all patterns that are used during
the extraction process. For each pattern we list the respective sequence of part-of-speech tags and
provide examples of terms that will be extracted by the pattern. Patterns 1-11 extract terms
consisting of different adjective-noun combinations. Patterns 12-17 are responsible for extracting
hyphenated terminology. Patterns 18-20 extract terms that make use of a preposition. Patterns
21-24 extract verbs and verb combinations from the fivegrams.

Note that some of the patterns identify terminology consisting of four parts. A four-word term
in a fivegram leaves space for a single word before or after the term to establish a relationship with
it. It is not possible to derive a noun-noun relationship in this case. Maximally, we can identify a
noun-verb relationship. All terms with four words are stored anyway and can later be connected
to other terms in a context extension step (see Section 4.3.10).

For each of the 24 patterns we derive a regular expression that determines the position of a
term in a fivegram. The list of regular expressions is extensible and will be loaded dynamically by
the extraction component.

89

ID Pattern Example

1 NN the doctor and the nurse
2 NN NN family doctor for a checkup
3 NN NN NN advice of health care provider
4 NN NN NN NN a health care team member
5 NN JJ NN DNA double helix , chromatin
6 NN JJ NN NN the mouse mammary tumor virus
7 JJ NN medical care and treatment .
8 JJ JJ NN nose and upper respiratory tract
9 JJ JJ NN NN nuclear magnetic resonance spectroscopy ,

10 JJ NN NN platelet or white blood cell
11 JJ NN NN NN coronary artery bypass surgery was

12 JJ : NN sick - bed to attend
13 JJ : NN NN the first - aid kit
14 NN : NN birth - rate has been
15 NN : NN NN the doctor - patient relationship
16 SYM : NN x - ray of chest
17 SYM : NN NN a semi - government authority

18 NN IN NN received a doctor of philosophy
19 NN IN NN NN type of health insurance that
20 NN IN JJ NN a doctor of dental surgery

21 VB consult
22 VB VB was consulted
23 VB VB VB has been consulted
24 VB VB VB VB may have been consulted

Table 4.7: Implemented part-of-speech pattern to identify noun key terminology and associated
verbs, based on the Penn Treebank tagset. Note that the verb pattern examples are not normalized
for better readability

4.3.8 Co-occurrence Analysis

In this section, we describe how to apply the syntactic patterns to extract co-occurring terms from
fivegrams, and how to aggregate the extraction results.

4.3.8.1 Extraction of Related Terms

The identification of semantically related terms is grounded in the Distributional Hypothesis first
discovered by Harris [324] in the fifties. It describes that words with similar meanings occur
in similar contexts. In our case the context is a five word window given by a fivegram. The
absolute frequencies of the fivegrams provide information on how often a specific context occurred.
Consequently, terms that co-occur more often have a stronger relationship.

In corpus linguistics the extraction of words and their surrounding words is usually referred to
as collocation. The application of the previously described syntactical patterns extracts certain
collocations from the fivegrams. The goal of the extraction process is to identify at least two
noun terms or at least one noun term and one verb in a fivegram. Noun-noun relations require
the collocations to be separated by at least one word. Therefore, the respective POS tag of the
separation word must not be part of the syntactical patterns (e.g., a coordinating conjunction).
In the extraction of noun-verb relations the patterns can be consecutive.

Pattern matching is applied in a hierarchical and non-overlapping way. Figure 4.6 shows
possible matching scenarios and what kind of relations are extracted from the fivegrams. Each
regular expression of the respective POS pattern is applied to the POS tag sequence. If applicable,

90

the matching determines a set of positions for each pattern. After that all overlapping matches
on the same level and all consecutive matches are discarded. A longer match on a higher level
discards all matches on the respective lower levels.

´µ¶· ¸µ·¹º

»¼·½½ ¸µ·¹º

Two ¸µ·¹º

¾¿½ ¸µ·¹

À¾Á »ÂÃ NN ÄÄ JJ NN NN

5-Å·ÂÆ ÇÈÉÊË doctor or mental health professional

´µ¶· ¸µ·¹º

»¼·½½ ¸µ·¹º

Two ¸µ·¹º

¾¿½ ¸µ·¹

À¾Á »ÂÃ DT NN ÌÍ ÀÎÀÏ NN

5-Å·ÂÆ ÇÐÑË Ò¼½ patient consult ¼Óº doctor

ÇÂË ÁÓ¿ÃÔ½-word term and Ò·ÓÕÔ½-word termÖ

(c) Two ºÓ¿ÃÔ½-word terms and Â ×½·ØÖ

Binary Noun Relations

• (doctorÙ ÚÛÜÝÞß àÛÞßÝà áâãäÛååæãÜÞßÙ çèéê
• ëÚÛÜÝÞß àÛÞßÝà áâãäÛååæãÜÞßÙ doctorÙ çèéê

Binary Noun Relations

• (patientÙ doctorÙ ìíê
• (doctorÙ patientÙ ìíê
Binary Noun-Verb Relations

• (patientÙ îïðñòóôõ ö÷ø
• (doctorõ îïðñòóôõ ö÷ø
Ternary Verb-Noun Relations

• (îïðñòóôõ patientõ doctorõ ö÷ø

ùúûü ýúüþÿ

T�ü�� ýúüþÿ

Two ýúüþÿ

O��ýúüþ

PO� T�� NN I� NN CC NN

5-Gü�� �	
� consultation b����� doctor and patient

�b� T�ü�� ÿs����-word terms.

Binary Noun Relations

• (îïðñòóôcôionõ doctorõ ,�ø
• (îïðñòóôcôionõ patientõ ,�)

• (doctorõ îïðñòóôcôionõ ,�ø
• (doctorõ patientõ ,�)

• (patientõ îïðñòóôcôionõ ,�ø
• (patientõ doctorõ ,�ø
Ternary Noun Relations

• (îïðñòóôcôionõ doctorõ patientõ ,�ø

Figure 4.6: Hierarchical POS pattern matching to determine positions and relations of terms in
the fivegrams

For example, in Figure 4.6a the single noun pattern (NN) occurs three times on the lowest level.
Two double-word matches and one triple-word match are determined. The JJ NN NN pattern
match on the highest level remains and the single noun in the first position is kept because
they do not overlap with another term and are separated by conjunction from each other. From
that fivegram two binary noun-noun relations are extracted: (doctor, mental health professional)
occurred 216 times and vice versa. It is necessary to store both directions, because each term will
occur in different contexts, thus its collocation will be considered separately.

In Figure 4.6b the pattern matching is simple: three single word terms will be determined. The
extraction records all term combinations together with their absolute frequencies (six relations).
The example illustrates that additionally a ternary relation will be stored.

Figure 4.6c depicts the extraction of noun-verb relationships. These relationships are extracted
if at least one verb and one noun occur in the fivegram. In the example, the fivegram contains
two single-noun terms and a verb. Three different types of relations will be extracted: Noun
relations between doctor and patient, noun-verb relations between consult and doctor and patient,
respectively, and a ternary verb-noun relation.

The results of the co-occurrence analysis are large occurrence and co-occurrence tables (roughly
1 billion rows in total). For each type of relationship a separate table is created. During the
analysis the extracted terms are inserted into the tables together with absolute frequencies of the
fivegram in which they occurred. Listing 4.4 shows the respective SQL statements to create these
tables. A noun term can consist of up to four parts (termw1, termw2, termw3, termw4). Table
nouncooccurrences stores binary noun term relationships (a term, a related term and the frequency
f). Table nounverbcooccurrences stores co-occurrences of noun terms and verbs. Ternary relations

91

are stored in the respective tables shown in Listing 4.4. Finally, we also store in a separate
table how often each extracted noun term occurred and by which pattern it was detected (table
singlenounoccurrences). The information is required for later relatedness computation. The tables
for single occurrences also include terms for which no relation could be detected (e.g., all four-word
terms).

1 CREATE TABLE nouncooccurrences (termw1 INTEGER, termw2 INTEGER, termw3 INTEGER,
termw4 INTEGER, re lw1 INTEGER, re lw2 INTEGER, re lw3 INTEGER, re lw4 INTEGER, f
INTEGER) ;

2

3 CREATE TABLE nounverbcooccurrences (termw1 INTEGER, termw2 INTEGER, termw3 INTEGER,
termw4 INTEGER, verb INTEGER, f INTEGER) ;

4

5 CREATE TABLE nounternarycooccur r ences (term1w1 INTEGER, term1w2 INTEGER, term2w1
INTEGER, term2w2 INTEGER, term3w1 INTEGER, term3w2 INTEGER, f INTEGER) ;

6

7 CREATE TABLE nounverbternarycooccur r ences (term1w1 INTEGER, term1w2 INTEGER,
term1w3 INTEGER, term2w1 INTEGER, term2w2 INTEGER, term2w3 INTEGER, verb
INTEGER, f INTEGER) ;

8

9 CREATE TABLE s i ng l enounoccu r r ence s (termw1 INTEGER, termw2 INTEGER, termw3 INTEGER,
termw4 INTEGER, pattern INTEGER, f INTEGER) ;

10

11 CREATE TABLE s i ng l ev e r boccu r r en c e s (verb INTEGER, f INTEGER) ;

Listing 4.4: Create table commands for the extracted relationships tables

4.3.8.2 Duplicate Aggregation

The result of the co-occurrence analysis contains a huge number of duplicates, because the same
terms (co-)occur in different contexts. Consequently, we aggregate frequencies of duplicate entries
in the respective single occurrence and co-occurrence tables. The necessary database operation
is a simple aggregation of frequencies using the sum and group by operators. Due to the large
size of the database tables we implemented an in-memory hashmap aggregation, which does not
require separate sorting of the input data. Hence, we were able to optimize processing time by
only sequentially reading the tables, dynamically building the hashmaps, and then writing the
result back to disk. Figure 4.7 shows examples of (a) noun-noun relations and (b) single noun
occurrences. For reasons of readability the tables contain the textual representation of the internal
word identifiers.

There are two special rules for single occurrences and ternary co-occurrences: The table for
aggregated single occurrences also includes the pattern by which the term was detected. As the
part-of-speech tagging is non-deterministic for different contexts, the same term could be detected
by multiple patterns. In those cases, the final result includes the most frequent pattern. In
contrast to binary relations, the order of ternary relations is not important. For aggregation we
sort the noun terms by ascending identifiers. Hence, we can avoid duplicate entries, e.g., for
noun-noun-verb relations, such as (doctor, patient, consult) and (patient, doctor, consult).

At this stage of the analysis process, we can already query a term for related terms ordered by
strength of the relationship using the total absolute frequencies.

4.3.9 Relatedness Computation

Having obtained the total frequencies of co-occurring terms and occcurrences of individual terms,
we can now determine the degree of relatedness between extracted terms. We calculate two
relatedness measures: Relative frequency and (Normalized) Pointwise Mutal Information.

4.3.9.1 Relative Frequency

The result of the binary relationship extraction contains absolute frequencies for term pairs. For
each extracted term, a set of related terms is known along with each frequency. To compare

92

term rel. term freq.

doctor nurse 26,097

doctor nurse 18,022
� � �

doctor patient 4�����

doctor patient 1��4��
� � �

doctor l����� 1�����
� � �

doctor office ������
� � �

n���� doctor ���4��

n���� doctor ������
� � �

n���� patient �����
� � �

n���� p ��!"!�n 1�����
� � �

term ��lr term f��#r

doctor n���� �������

doctor l����� ����4��

doctor office �44����

doctor patient 41���11

doctor degree �������
� � �

n���� doctor �������

n���� p ��!"!�n ������4

n���� patient 1������

n���� station 14��1��

n���� �$l� 1������
� � �

(a) D�pl!"�%� n$�n-n$�n

co-$""����n"��

(&' A))��)�%�* n$�n-n$�n

co-$""����n"��

term patr f��#r

doctor 1 �����

doctor 1 �����
� �

f�+!l� doctor 2 �����

f�+!l� doctor 2 �����
� �

n���� 1 �����

n���� 1 ��41�
� �

+�*!"�l care � �����
� �

(c) D�pl!"�%� �!n)l� n$�n

$""����n"��

term patr f��#r

doctor 1 1���1��11�

f�+!l� doctor 2 1���4�4

n���� 1 ��4���1��

+�*!"�l care � 1�����1��

+�*!"�l �" $$l � 1������1�

&!�% -rate 14 �4��14�

&l$$*-v����l 14 �������

x-ray diffraction 1� ����44�
- -

(d) /002305637 89:0;3 :<=:

<oo=223:o38

Figure 4.7: Aggregation of duplicate extracted co-occurrences (a)+(b) and occurrences (c)+(d)
(textual representation of the database content)

the relatedness between terms, we calculate the relative frequencies for each set of related terms.
Let T = {t1, . . . , tn} be the set of terms extracted from the fivegrams (n denotes the number of
distinct terms in the binary relationship extraction result). For every ti ∈ T there exists a set
of tuples with related terms r and their absolute occurrences o: Ri = {(r1, o1), . . . , (rm, om)} (m
denotes the number of related terms). For each rj we calculate the relative frequency fj using
Equation 4.1.

fj =
oj

∑

k ok
(4.1)

Relative frequencies can be easily calculated for noun-noun relationships. As mentioned in
Section 4.3.8.1, terms extracted during co-occurrence analysis are stored in the co-occurrence
table in the following way: If a fivegram contains term1 and term2, two entries are inserted:
(term1,term2) and (term2,term1). We give an example of why it is important to treat the direction
of the relationship separately.

The relationship between doctor and patient is stored using two entries: (doctor,patient,418711)
and (patient,doctor,418711). Of course, the absolute frequency is the same for both entries. Af-
ter calculating the relative frequencies, the entries are as follows: (doctor,patient,0.03893) and
(patient,doctor,0.00765). The reason for the difference is that, from the doctor’s point of view,
the relationship with the patient is stronger, but from the patient’s point of view there are other
more important relationships and there are also many more relationships (the corpus frequency
of patient is about three times higher than of the term doctor)).

Relative frequency can be used to perform top-k queries on relationships to retrieve rankings
of related terms. One of the disadvantages of relative frequency is that very general terms tend to
be ranked more highly because they occur very often and in almost every context (e.g., the term
time is in the top 25 related terms of doctor, nurse, patient, and physician).

4.3.9.2 Pointwise Mutal Information

Pointwise mutal information (PMI) measures the dependency between the probability of coinciding
events and the probability of individual events [325]. The general definition is as follows: X and Y

are discrete random variables and x and y are particular outcomes of X and Y , respectively. PMI
is the ratio of their actual joint probability to the joint probability assuming independence [189]
as defined in equation 4.2.

pmi(x, y) = log

[

p(x, y)

p(x)p(y)

]

(4.2)

93

The application of PMI to the extracted terms obtained from the fivegrams means that the
observed events x and y terms14 are extracted from the fivegrams. PMI of the terms relates the
probability of their coincidence p(x, y) with the probabilities of observing both terms indepen-
dently p(x)p(y). PMI is an associativity score of two terms considering their individual corpus
frequency. The individual probabilities are estimated by counting the occurrences f(x) and f(y)
within the complete text corpus. These frequencies can be either obtained from the 1/2/3/4-gram
datasets (depending on the number of words that make up a term) or from a table of individ-
ual noun occurrences created during the extraction process. The probabilities p(x) and p(y) are
then computed by dividing f(x) and f(y) by the corpus size N. The probability of co-occurrence
p(x)p(y) is calculated by dividing f(x, y) (obtained from the noun co-occurrence table) by the
corpus size N.

In order to compare associativity scores with each other, there exists a normalized variant of
PMI. Normalized pointwise Mutal Information (NPMI) is calculated according to the Equation 4.3.
It normalizes PMI values between [-1,+1].

npmi(x, y) =
pmi(x, y)

− log [p(x, y)]
(4.3)

We show an example illustrating the performance of NPMI. The extraction process has detected
that the term doctor co-occurred with order and dentist at a similar absolute frequency (about
170,000 times). Considering the absolute or relative frequency, both related terms receive a similar
degree of relatedness. NPMI of both terms takes into account that order is a very general term
that occurs in many contexts. Therefore, there is no interesting relationship between doctor and
order. Consequently, npmi(doctor,order) is much lower than npmi(doctor,dentist).

However, PMI has the disadvantage that rare events (low frequencies) are rated with high
associativity. This happens especially when a term very rarely occurs together with another term.
For example, the term fiction audience has only occurred with doctor and only a few times, but
npmi(doctor,midwife) is almost the same npmi(doctor,fiction audience). The latter, of course, is
not an interesting relationship in a medical context.

All three associative measures (relative frequency, pmi and npmi) are calculated for each binary
relationship and stored in the resulting database.

4.3.9.3 PMI Computation for Ternary Relations

In order to calculate PMI scores for ternary noun relationships and ternary noun-noun-verb re-
lationships we extend Equations 4.2 and 4.3 to three variables (cf., Equation 4.4). That means,
that x, y and z are terms and PMI relates the probability of their coincidence p(x, y, z) with the
probabilities of observing the three terms independently p(x)p(y)p(z).

pmi(x, y, z) = log

[

p(x, y, z)

p(x)p(y)p(z)

]

npmi(x, y, z) =
pmi(x, y, z)

− log [p(x, y, z)]
(4.4)

4.3.10 Context Extension

So far, terminology extraction was based on fivegrams, thus only five consecutive tokens are avail-
able to find related terms. It limits the extraction of related terms to the following relationships:

• One-word term ↔ one-word term

• One-word term ↔ two-word term

• One-word term ↔ three-word term

• Two-word term ↔ two-word term

• One-word term ↔ one-word term ↔ one-word term

14Note that the terms can be multi-word expressions

94

Terms consisting of four words cannot be related to other terms at all. In order to relax these
limitations, we describe in this section the generation of sixgrams from the fivegram data.

4.3.10.1 Sixgram Generation

It is a typical use case for N-gram data to predict the most likely subsequent word for a sequence
of input words. For example, a sequence of four words can be used to retrieve a set of fivegrams
that start with the particular sequence. Figure 4.8a and b show examples of the sequence [doctor
, dentist ,]. The dataset contains 21 fivegrams which start with the sequence and 21 fivegrams in
which the sequence occurs at the end. The most likely subsequent word of the sequence is ”or”
and the most likely subsequent noun is ”lawyer”.

doctor , dentist , or 1316

doctor , dentist , and 903

doctor , dentist , >?@BEF HJK
doctor L dentist L MNFQE 325

doctor L dentist L RS?FU?VWQX YZK
doctor L dentist L ShQRWX?> YHK
doctor L dentist L etc. YKH
doctor L dentist L ?VVhNMX?MX JK

… … … …

doctor L dentist L optician ZH
doctor L dentist L [?F[EF ZK
doctor L dentist L RQBVSh>h\WQX 55

doctor L dentist L engineer 52

doctor L dentist L optometrist]^
doctor L dentist L ?FVSWXEVX]Z
doctor L dentist L VSWFhRF?VXhF]Y

a doctor L dentist L Y]J_
L doctor L dentist L YKKY
XSE doctor L dentist L `Ka
BhNF doctor L dentist L _^J
(doctor L dentist L K]J
any doctor L dentist L Y]Y
UEmWV?> doctor L dentist L YY_
d?UW>B doctor L dentist L ^J
… … … …

XSEWF doctor L dentist L Z]
eSE doctor L dentist L Za
g doctor L dentist L 52

ihNF doctor L dentist L HY
own doctor L dentist L]^
new doctor L dentist L]Z
@WXS doctor L dentist L]Y

j[k qWtE\F?UQ @WXS udoctorL dentistLu
at XSE [E\WMMWM\.

(a) qWtE\F?UQ @WXS udoctorL dentistLu
at XSE end.

a

doctor L dentistL

XSE

BhNF

L

...

d?UW>B

own

UEmWV?>

or

>?@BEF

MNFQE

RS?FU?VWQX

...

tEXEFWM?FW?M

etc.

RQBVSh>h\WQX

wyz{

y|

w{w}

55

(c) ~F?RS representation of XSE VhU[WM?XWon.

(d) ~EMEF?XEm QW�-grams (E�VEFRX)

UEmWV?> doctor L dentist L >?@BEF 352

UEmWV?> doctor L dentist L RS?FU?VWQX Y_`
...

d?UW>B doctor L dentist L RQBVSh>h\WQX `K

Figure 4.8: Process of the six-gram generation

We exploit the inherent structure of the fivegrams and how they have been obtained to materi-
alize N-grams of length six. Since the fivegrams have been extracted by traversing the original text
with a sliding window, it is possible to derive their most likely predecessor and successor words.
In general, this is done by connecting the left neighbor and the right neighbor of each fourgram
within the fivegram data. An example of the graph representation is shown in Figure 4.8c. In
this particular example, a permutation would already result in 441 possible sixgrams. Processing
the huge amount of sixgrams would be impractical. Therefore, we apply a number of heuristics
to generate only useful sixgrams. In our context ”useful” means that more term relations can be
extracted from the generated sixgrams (e.g., the sixgram [a doctor , dentist , or] does not contain
additional information, but [family doctor , dentist , pharmacist] does).

The process of the sixgram generation is as follows: (1) We determine a set of unique fourgrams
within the fivegrams. (2) All fourgrams starting with a sentence start tag (START), ending with
a sentence end tag (END), and ending with a period are sorted out, because an extension
beyond sentence boundaries makes no sense. In case the fourgram does not contain a noun, it
will be eliminated as well. (3) For each remaining fourgram we query left and right neighbors
in the fivegram dataset. (4) We iterate through all possible combinations and keep a sixgram in
case the following conditions are met: the sixgram must start with a noun or an adjective-noun
combination and must end with a noun. That means added words must contribute to the intended
extraction. We also accept the sixgram if it conforms to the former condition on one side and
a verb was added on the other side. All rules ensure that additional relations can be detected
which have not been seen in the fivegram dataset. (5) Additionally, we implement a heuristic that
discards a fourgram in case too many neighbours have been found. This usually happens if the
phrase is too general (e.g., the original fivegram was [doctor during the course of] and the derived
fourgram[during the course of] would have almost 1000 right neighbors). (6) The frequency of the
resulting sixgram is determined by taking the lower frequency from the two fivegram that were
used at the beginning and end of the sixgram.

95

In the example shown in Figure 4.8 there are only two beginnings that meet the previously
described conditions and there are 16 possibilities that end with a noun. Consequently, 32 sixgrams
are generated (an excerpt is shown in Figure 4.8d). Part-of-speech tags (not shown in the Figure)
are stored together with the sixgrams.

4.3.10.2 Terminology Extraction

After having generated the sixgrams, we process the sixgram dataset in the same manner as
described in Sections 4.3.6 to 4.3.8. The sixgrams are normalized, and the terminology extraction
uses exactly the same POS patterns. As a result, we are now able to additionally extract the
following types of relationships (new types are marked in bold):

• One-word term ↔ one-word term

• One-word term ↔ two-word term

• One-word term ↔ three-word term

• One-word term ↔ four-word term

• Two-word term ↔ two-word term

• Two-word term ↔ three-word term

• One-word term ↔ one-word term ↔ one-word term

• One-word term ↔ one-word term ↔ two-word term

Furthermore, ternary noun-noun-verb relationships include terms consisting of up to four
words.

4.3.10.3 Integration of Fivegram and Sixgram Extraction Results

The integration of the extraction results from the fivegram and the sixgram dataset is straight-
forward. For both sets, the extraction process generates binary noun-noun relationships, binary
noun-verb relationships, ternary noun-noun-noun relationships, and ternary noun-verb-noun rela-
tionships. Prior to relatedness computation, all four types are iterated and sixgram relationships
that are not included in the fivegram extraction results are added. Terms, not yet included, are
added to the vocabulary and term frequencies are added together. The degree of relatedness be-
tween terms in the integrated dataset is determined using relative frequency and normalized PMI
as described in Section 4.3.9.

96

4.3.11 SemNet Construction

The final step of the extraction process is the construction of the SemNet graph. The results of
the extraction process and co-occurrence analysis are so far large-scale tables of word sequences,
related word sequences and the respective relatedness measures. Multiword expressions (terms
consisting of more than one word) are still stored as separated words using a unigram index
because of the context extension algorithm.

The first step in SemNet construction is to merge word sequences and create an index of
terms (the vocabulary). All relationship tables containing the binary and ternary relationships are
converted to use the new index afterwards. Second step is the creation of a semantic network, which
is in essence a large-scale graph in which each term is a node (with a type, either noun or verb)
and each directed edge denotes a weighted relationship between the terms. SemNet includes 5.9
million unique one-word terms and multiword expressions connected with 355 million relationships.
Each relationship is quantified by the absolute frequency of co-occurrence, a calculated relative
frequency, the pointwise mutal information (PMI) measurement and its normalized form (NPMI).

Figure 4.9 shows the four aspects of SemNet for an example term. (a) On top the most
related noun terms for hospital are shown. The ranking is based on the lexicographer’s mutual
information (LMI) as it is implemented in the recommender system (cf., Section 6.6). Terms that
have a relationship are connected with two directed edges in order to capture the different relative
frequencies. (b) On the right-hand side examples of the most related verb terms are shown. There
are also edges for the opposite direction (not shown in the figure for space reasons). (c) On the
left of Figure 4.9 ternary relationships are shown for three noun terms that have been observed
together with their weights. (d) At the bottom ternary relationships are shown for verbs that
connect two nouns.

hospital

leave

patient

go

admit

clinic

admission

officer

employee

high school

college

school

discharge

file

complaint
exceed

period

�f:370,539;

rf:0.022;

pmi:0.862;

npmi:0.141]

[...]
[...]

[...]

[...]

[...]

[f:411,666;

rf:0.05;

pmi:1.828;

npmi:0.302]

[f:370,539;

rf:0.005;

pmi:0.862;

npmi:0.141]

[f:44,342;

rf:0.001;

pmi:3.919;

npmi:0.558]

[f:17,912;

rf:0.007;

pmi:4.66;

npmi:0.629]

[...]

[...]

(a)

(b)

(d)

(c)

Figure 4.9: Excerpt of the SemNet graph for the term ”hospital”. (a) binary noun-noun relation-
ships, (b) binary noun-verb relationships, (c) ternary noun-noun-noun relationships, (d) ternary
noun-verb-noun relationships (f – absolute frequency, rf – relative frequency, (n)pmi – (normal-
ized) point wise mutual information)

97

4.4 Extraction Results

This section summarizes the outcomes of the different analysis and extraction steps. In particular,
we provide statistics of our analysis methods on the Google Books N-Gram dataset. Table 4.8
shows the structure of this section in relation to the extraction process described in Section 4.3.

Analysis Step Results

Section 4.3.2 Google Books N-Gram Dataset
Section 4.3.3 Dataset Conversion
Section 4.3.4 Dataset Reduction

Section 4.4.1 Conversion Results

Section 4.3.5 Part-Of-Speech Tagging
Section 4.3.6 Normalization

Section 4.4.2 Normalization Results

Section 4.3.7 Syntactic Patterns Section 4.4.3 Pattern Match Results

Section 4.3.8.1 Extraction of Related Terms Section 4.4.4 Co-occurrence Results

Section 4.3.8.2 Duplicate Aggregation Section 4.4.5 Aggregation Results

Section 4.3.10 Context Extension
Section 4.3.11 SemNet Construction

Section 4.4.6 Context Extension and Integration Results

Table 4.8: Overview of the analysis sections and their corresponding result sections

4.4.1 Conversion Results

In Section 4.3.3 we described in detail the conversion of the Google Books N-Gram dataset text
files into database representations of reasonable size. Apart from the 1-gram and 5-gram dataset,
it was also required to convert the 2-grams, 3-grams, and 4-grams for later analysis steps to be
able to retrieve frequencies of multi-word expressions. Table 4.9 summarizes the results of the
conversion process and the properties of the datasets.

1-grams 2-grams 3-grams 4-grams 5-grams

Compressed size 5.3 GB 144 GB 1508 GB 294 GB 236 GB
Uncompressed size 27 GB 872 GB 10193 GB 2674 GB 2411 GB
Lines of text 1.4 B 35.6 B 341 B 76.2 B 59.8 B
Conversion time 0.5 h 16 h 175 h 45 h 25 h
Database size 0.38 GB 4.0 GB 28.5 GB 22.8 GB 22.3 GB
Number of N-grams 10 M 181 M 1160 M 820 M 704 M

Table 4.9: Summary of the N-gram dataset conversion process

It is surprising that the trigram dataset is four times the size of the four-gram dataset, but the
resulting database does not contain four times as many trigrams. The reason is that the input files
of the datasets contain many variations of trigrams with and without part-of-speech tags for all
years (e.g., one word with POS tags and two words without tags as well as two words with POS
tags and one word without tag for the same trigram). Google has excluded all N-grams with less
than 40 occurrences from the dataset. In general, sequences of three words occur more frequently
than sequences of four words. Therefore, there are more trigram variations in the dataset that are
aggregated by our conversion process.

For speeding up the later analysis steps we performed a reduction of the fivegram database as
described in Section 4.3.4. We excluded all fivegrams that only contained stopwords or punctuation
and fivegrams that do not contain at least one noun word (according to the POS tags provided
by Google). The reduction examined 704,355,409 fivegrams and sorted out 40% useless fivegrams
resulting in 427,030,743 fivegrams for subsequent analysis steps.

98

4.4.2 Normalization Results

Before normalization, the fivegram dataset was tagged with the Stanford POS tagger and the
Google POS tags were replaced by the more precise Stanford tags (cf., Section 4.3.5). The normal-
ization process examined 427 million fivegrams. 244 million fivegrams (57%) have been changed.
Thus, in half of the fivegrams at least one word was lowercased, stemmed, or a special rule was
applied. The distribution of the applied rules is shown in Table 4.10. In total 2.14 billion words
have been examined and 326 million words (15.3%) have been normalized according to the rules.

Rule Occur. Perc. Example

Verb stemming 178.61 M 53.51% examined → examine
Noun to singular 120.17 M 36.00% doctors → doctor
Lowercase noun 19.67 M 5.89% Doctor → doctor
Lowercase adjective 9.25 M 2.77% Medical → medical
Lowercase verb 3.30 M 0.99% Prescribe → prescribe
Change hyphen 2.68 M 0.80% – → -
Lowercase symbol 0.05 M 0.02% X - ray → x - ray
Acronym to singular 0.07 M 0.02% ICUs → ICU

Table 4.10: Summary of the fivegram normalization results

4.4.3 Pattern Match Results

The co-occurrence analysis was conducted on the reduced fivegram dataset consisting of 427 million
fivegrams. 386 million fivegrams contained a term that conformed to one of the 20 noun patterns.
We expected that in all fivegrams at least one pattern will match, because the reduction rules
defined that at least one noun had to occur in a fivegram (see Section 4.3.4). The reason is
as follows: The reduction was applied using the original Google part-of-speech tags. After the
reduction we tagged the reduced fivegram set with the more precise Stanford tagger and the
tags were replaced. Different lexical categories were determined in these cases, hence 41 million
fivegrams originally contained a noun according to Google POS tagging that were tagged otherwise
with the Stanford tagger.

Table 4.11 summarizes how often the POS patterns (see Section 4.3.7.7) occurred in the dataset
(after discarding overlapping matches). In total, 477 million occurrences of terms were detected.
The single noun pattern was responsible for finding 351 million single-word terms. 90 million
double-word terms were found (patterns JJ NN and NN NN). Roughly 30 million triple-word
terms were detected and 5.4 million terms consisting of four parts. In total, 220 million verb
expressions have been found. The examples presented in the table are the most frequent terms
that were extracted by the respective pattern.

The distribution of the pattern occurrences corresponds to the vocabulary analysis as described
in Section 4.3.7.1. The three dominant patterns NN, JJ NN, and NN NN constitute 91.67
percent of the terms found.

99

No. Pattern Occurrences % No. Pattern Occurrences %

1 NN 351,813,830 73.665 14 NN : JJ NN 355,179 0.074
2 JJ NN 69,679,552 14.590 15 NN JJ NN 326,669 0.068
3 NN NN 20,520,297 4.297 16 JJ : JJ NN 227,849 0.048
4 NN IN NN 20,054,684 4.199 17 NN : VBN NN 174,430 0.037
5 NN IN JJ NN 3,004,718 0.629 18 SYM : NN 121,501 0.025
6 JJ NN NN 2,798,153 0.586 19 JJ NN NN NN 101,877 0.021
7 JJ JJ NN 2,654,912 0.556 20 JJ JJ NN NN 99,577 0.021
8 NN : NN 2,013,229 0.422 21 NN NN NN NN 52,445 0.011
9 NN NN NN 1,148,578 0.240 22 SYM : JJ NN 32,366 0.007
10 NN IN NN NN 993,481 0.208 23 SYM : NN NN 31,325 0.007
11 JJ : NN NN 469,888 0.098 24 NN JJ NN NN 23,124 0.005
12 NN : NN NN 464,997 0.097 25 JJ NN JJ NN 19,597 0.004
13 JJ : NN 401,854 0.084

Total Noun Term Pattern Matches 477,584,112 (100%)

1 VB 195,376,321 88,671 3 VB VB VB 1,235,048 0,561
2 VB VB 23,719,974 10,765 4 VB VB VB VB 7,617 0,003

Total Verb Term Pattern Matches 220,338,960 (100%)

Table 4.11: Number of noun and verb pattern matches. The figures denote how often a certain
pattern matched in the set of 427 million fivegrams (after discarding overlapping matches)

4.4.4 Co-occurrence Results

This section summarizes the results of the extraction process for detected relationships in the
fivegram dataset. We present numbers on how many fivegrams contained co-occurring terms and
what lengths they had. Table 4.12 presents recognized binary relationships for noun-noun and
noun-verb term pairs. Percentages refer to the total of 427 million fivegrams in the dataset.

The first part of the table lists numbers with respect to noun terms. A noun-noun relationship
was extracted from a fivegram when two terms in the fivegram were detected according to the
noun POS patterns. The terms had to be separated by at least one token (e.g., ”the doctor and
nurse”). This does not allow to extract certain combinations (e.g., a 1-word term that occurs
along with a 4-word expression) because a context larger than 5 tokens is required. 89 million
fivegrams contained a binary noun-noun relationship.

The second part of the table shows the results of nouns that occur along with verbs. A
noun-verb relationship was extracted from a fivegram when a noun and a verb were found in
the fivegrams. A separation token is not necessary. For example, ”the doctor prescribed the
medication” is a valid phrase that results in an extraction. Therefore, almost twice as many
relationships could be extracted. 159 million fivegrams contained a binary noun-verb relationship.

Where possible, the analysis extracted ternary relationships as well. The extraction of a
ternary relationship with three noun terms was only possible for 1-word terms. Other extracted
relationships are combinations of a verb term and two noun terms. Table 4.13 presents statistics
of the detected ternary relationships. Note that ternary relationship extraction will always result
in two binary noun-verb relationships or three binary noun-noun relationships, respectively.

In summary, 265 million co-occurrences have been extracted from the fivegram dataset that
resulted in 248 million binary relationships and 17 million ternary relationships (still including
duplicates). 164 million fivegrams could not be used for relation extraction because they contained
only one term.

100

Relationship Type Number of
Fivegrams

Percen-
tage

1-word noun term + 1-word noun term 70,819,765 16.58%
1-word noun term + 2-word noun term 15,422,408 3.61%
1-word noun term + 3-word noun term 1,942,865 0.45%
2-word noun term + 2-word noun term 611,610 0.14%
Fivegrams with binary noun-noun relationships 88,796,648 20.79%

1-word noun term + verb term 131,893,156 30.89%
2-word noun term + verb term 22,610,633 5.29%
3-word noun term + verb term 4,358,409 1.02%
4-word noun term + verb term 458,629 0.11%
Fivegrams with binary noun-verb relationships 159,320,827 37.31%

Table 4.12: Statistics on the distribution of the binary relationships contained in the fivegram
data

Relationship Type Number of
Fivegrams

Percen-
tage

2x 1-word noun term + verb 14,221,482 3.330%
3x 1-word noun term 1,309,719 0.307%
1x 1-word + 1x 2-word noun term + verb 1,286,032 0.301%
1x 1-word + 1x 3-word noun term + verb 38,975 0.009%
2x 2-word noun term + verb 14,682 0.003%
Fivegrams with ternary noun-noun and
noun-verb relationships

16,870,890 3.951%

Table 4.13: Statistics on the distribution of the ternary relationships contained in the fivegram
dataset

4.4.5 Aggregation Results

So far, the analysis process has recorded pattern matches of nouns and verbs and their co-
occurrences in different contexts within the five-gram dataset. The results still contain duplicate
entries, e.g., the term doctor and nurse may appear together in different five-grams with different
frequencies, hence, multiple relationships and pattern matches with the same content have been
created. The purpose of duplicate aggregation is to merge duplicate matches of individual terms
and of duplicate extracted relationships by adding up their individual frequencies.

Table 4.14 provides an overview of how many distinct terms and relationships have been
extracted throughout the process. Roughly, 700 million pattern matches are reduced to 8.7 million
uniquely identified keyword terms. 265 million extracted relationships contain about 51 million
unique connections between the identified terms.

Element Before After

Noun term pattern matches 477,584,112 8,682,195
Verb term pattern matches 220,338,960 44,877

Binary noun-noun relationships 88,796,648 30,391,650
Binary noun-verb relationships 159,320,827 11,830,236

Ternary noun-noun-noun relationships 1,248,088 719,762
Ternary noun-noun-verb relationships 15,369,594 8,004,178

Table 4.14: Number of extracted terms and relationships before and after duplicate aggregation

101

No. Pattern Unique terms Most frequent term

2 JJ NN 2.300.095 first time
4 NN IN NN 1.432.029 point of view
5 NN IN JJ NN 1.131.213 museum of natural history
3 NN NN 1.123.914 interest rate
7 JJ JJ NN 562.307 central nervous system
6 JJ NN NN 546.892 fair market value
10 NN IN NN NN 372.916 weapon of mass destruction
1 NN 259.720 time
9 NN NN NN 252.823 health care provider
8 NN : NN 105.427 x - ray
15 NN JJ NN 101.743 junior high school
12 NN : NN NN 88.837 right - hand side
14 NN : JJ NN 80.696 cross - sectional area
11 JJ : NN NN 77.467 short - term memory
16 JJ : JJ NN 49.971 mid - nineteenth century
17 NN : VBN NN 40.113 state - owned enterprise
20 JJ JJ NN NN 37.644 average annual growth rate
19 JJ NN NN NN 36.642 high school graduation rate
21 NN NN NN NN 22.915 attention deficit hyperactivity disorder
13 JJ : NN 17.282 anti - semitism
24 NN JJ NN NN 10.189 community mental health center
18 SYM : NN 9.832 co - operation
25 JJ NN JJ NN 9.272 high performance liquid chromatography
23 SYM : NN NN 6.858 cod - liver oil
22 SYM : JJ NN 5.398 co - operative society

Table 4.15: Noun POS pattern ranked by number of distinct extracted terms

The most interesting result of the aggregation is which of the POS patterns contributed most
to the set of unique terms. In Section 4.4.3 we saw that ”NN”, ”JJ NN” and ”NN NN” were the
three most common patterns (73.7%, 14.6%, resp. 4.3% of the matches), but in fact the patterns
”JJ NN” (26.5%), ”NN IN NN” (16.5%), ”NN IN JJ NN” (13%), and ”NN NN” (13%) were
responsible for extracting the most unique terms. Table 4.15 displays the patterns by uniquely
extracted terms and shows the most frequent term extracted by the respective pattern.

102

4.4.6 Context Extension and Integration Results

In this section, we summarize the achievements of extending the extraction context from five-
grams to six-grams. The starting point of the analysis is the non-normalized and reduced set
of 427 million five-grams. In a first step, the set of distinct four-grams included in the five-
gram dataset was determined by taking the first four and the last four tokens of each five-gram,
respectively. 299 million different four-grams were extracted. Four-grams, which either started
with a sentence-start token or ended with a sentence-end token or no longer contained a noun,
cannot be extended and have been discarded. The remaining 218 million four-grams were used as
input to determine left and right neighbor combinations for the six gram generation. Table 4.16
provides the exact numbers.

About half of the four-grams (109 million) had both left and right neighbor tokens for the
six-gram generation. Theoretically, all possible combinations would have made about 2 billion
six-grams. The heuristics described in Section 4.3.10 produced a manageable set of 439 million
useful six-grams. Useful means that the additional token contains either a noun, an adjective, or
a verb that contributes to one of the POS patterns.

Processing Step Number of N-grams

Five-grams analyzed 427,030,743
Four-grams extracted 298,723,990
Four-grams analyzed 217,894,500
Four-grams extended 108,833,227

Six-grams generated 439,059,211

Table 4.16: Number of N-grams processed for context extension

After having generated the six-grams, the co-occurrence analysis was re-run on the extended
dataset. The main objective of the context extension was the full support of noun terms consisting
of four words that could only be associated with verbs so far. Furthermore, it was the goal to
maximize the number of extracted relationships. Table 4.17 shows the extracted distinct terms
and relationships of SemNet before and after the integration with the six-gram analysis. The
semantic network contains five times more connected 4-word terms, and the number of ternary
relationships was increased by more than an order of magnitude.

Distinct Terms Before After Increase

1-word terms 236,474 414,014 75 %
2-word terms 2,118,938 2,944,694 39 %
3-word terms 1,054,045 1,512,475 43 %
4-word terms 193,215 1,040,323 438 %

All terms 3,602,672 5,911,506 64 %

Distinct Relationships Before After Increase

Binary noun-noun relationships 30,391,650 174,709,510 475%
Binary noun-verb relationships 11,830,236 41,542,072 251%
Ternary noun-noun-noun relationships 719,762 38,329,325 5225%
Ternary noun-noun-verb relationships 8,004,178 100,749,574 1159%

All relationships 59,672,898 355,330,481 495 %

Table 4.17: Number of distinct terms and relationships contained in SemNet before and after the
context extension

103

4.5 Evaluation

This section presents the evaluation of SemNet. The evaluation of a newly developed information
extraction method and source of knowledge is challenging, as there are generally no gold standards
available that exactly match the type of results obtained with the method. Consequently, we assess
the content of the semantic network by comparing it with existing knowledge bases with similar
content. Section 4.5.1 describes the datasets we use for comparison. The evaluation procedure is
described in Section 4.5.2. The results of the evaluation are shown in Section 4.5.3.

4.5.1 Datasets

SemNet is compared to two existing manually created semantic databases: WordNet V3.1 [108]
and ConceptNet V5.1 [113] (the latter also contains automatically generated content). They were
selected for the following reasons. On the one hand, they contain information about terminol-
ogy and its semantic relationships, similar to SemNet. On the other hand, both projects focus
on conceptual knowledge that can be used in domain-specific modeling. Automatically created
knowledge bases such as YAGO15 and DBpedia16 have limited benefits for domain modeling as
they concentrate on factual knowledge (at the instance level). In the following, the term pregnancy
is used as an example to illustrate what kind of information is contained in the respective networks
and how it is modeled.

WordNet. WordNet is a lexical database for the English language [108]. It models synsets that
group words that have the same meaning. It contains word senses for nouns, verbs, adjectives
and adverbs. Most of the information relates to nouns (a total of 117,659 synsets, 82,115 nouns
synsets, and 102,249 noun relationships). WordNet mainly covers synonymous, taxonomic and
part-whole relationships. Figure 4.10a shows 7 of the 32 relationships that exist in WordNet for
the word sense pregnancy. The words pregnancy and maternity are both synonyms associated
with the word sense object in the middle. There are several relationships to other word senses,
including the fact that pregnancy is a physical condition, that there are two specific types of
pregnancies, and that morning sickness and parturiency are part of the pregnancy. For reasons
of space, we omit the word sense objects for the other terms. Each of the above relationships is
actually connected to a word sense that has a synonym link to the actual word.

ConceptNet. ConceptNet is a ”large semantic graph that describes general human knowl-
edge” [113]. It models concepts which are expressed with natural language phrases. It was
created manually based on the Open Mind Common Sense project17 and partially automatically
from Wiktionary18 and the ReVerb[206] project. Lexical types are indistinguishable, ConceptNet
includes all kinds of concepts such as named entities (barack obama), noun phrases (database soft-
ware), adjectives (beautiful), and activities (build aircraft) (1.7 million English concepts in the
core version of ConceptNet and 5.9 million relationships between them). ConceptNet also features
taxonomic, synonym and part-whole relationships. Additionally, it contains several other relation-
ship types (e.g., AtLocation, HasProperty). Figure 4.10b shows examples (7 of 37 relationships)
for the concept pregnancy.

SemNet. SemNet is a large-scale graph of related terms with almost 6 million single-word terms
and multi-word expressions classified into nouns and verbs. Relationships between terms are
modeled as weighted edges between the terms using several corpus-based and information-theoretic
measurements (355 million relationships). Figure 4.10c shows the term pregnancy together with
its 7 most related terms (14,143 relations in total, for space reasons we omit back references).

15http://www.yago-knowledge.org
16http://dbpedia.org
17http://csc.media.mit.edu/
18https://www.wiktionary.org/

104

http://www.yago-knowledge.org
http://dbpedia.org
http://csc.media.mit.edu/
https://www.wiktionary.org/

Conceptually

RelatedTo

maternity

morning
sickness

physical
condition

ectopic
pregnancy

entopic
pregnancy

synonym

part

meronym

parturiency

hyponym

hypernym

pregnancy

stretch

morning
sickness

physical
condition

go to bed

ectopic
pregnancy

PartOf

womb

IsA
IsA

Related

To

Causes

start
family

HasSubevent

(b) The concept pregnancy in

ConceptNet (7 out of 37 relationships).

(a) The word sense pregnancy in

WordNet (7 out of 32 relationships).

woman mother

menstru-
ation

delivery

birth

childbirth

lactation

(c) The term pregnancy in SemNet

(First 7 out of 14,143 relationships).

pregnancy
1

2

3

4

5

67

15168.3

69510.9

90642.7

20890.0

12045.2

11315.910611.0

pregnancy

Figure 4.10: Examples of how terminology information for pregnancy is represented in WordNet,
ConceptNet and SemNet

4.5.2 Quantitative Evaluation Procedure.

The evaluation of the information contained in SemNet from WordNet and ConceptNet takes place
in two steps. We first determine how many synsets/words from WordNet and how many concepts
from ConceptNet are included in SemNet. Second, we take the synsets and concepts found and
determine how many of their relationships are contained in SemNet. Therefore, we can examine
how well the specific knowledge base relationships are represented in SemNet.

To generate an evaluation dataset from WordNet, we iterate through the synsets of WordNet,
which are classified as nouns (82,192 synsets). We exclude 18,114 instance synsets (e.g., city
names, countries, animal orders) because these types of words and expressions were explicitly
filtered during the creation of SemNet. We also filter synsets with words that contain numbers
and other special characters (789 synsets), and synsets that have no relationship destinations due
to the filtering rules (6,230 synsets). As a result, 57,059 noun synsets are evaluated. These synsets
comprise 77,554 unique terms and are connected with 154,035 relationships.

Comparing ConceptNet with SemNet is more challenging because concept names in Concept-
Net can contain all sorts of lexical expressions and are not categorized. Therefore, not all nouns
can be selected. We have used POS tagging for concept names to identify nouns, but it is too
inaccurate for individual words without context. Therefore, we have determined all concepts in
ConceptNet that have a corresponding noun in WordNet. As a result, 53,612 concepts in conjunc-
tion with 634,128 relationships are evaluated.

The evaluation of the term coverage is carried out as follows. We iterate through the WordNet
and ConceptNet terms and count whether the respective term is in the SemNet vocabulary. A
WordNet synset is considered to be found if at least one of the synonyms is included in SemNet.

The relationships in WordNet and ConceptNet are evaluated as follows. All previously found
synsets/concepts are iterated and for each term the corresponding related terms are retrieved from
SemNet. We then determine how many WordNet/ConceptNet relationship targets are included
in SemNet’s list of related terms.

4.5.3 Quantitative Evaluation Results

Term Coverage. Table 4.18 presents the results of the term coverage evaluation for WordNet
and ConceptNet. On average, SemNet covers 83.9% of the evaluated noun concepts of Word-
Net and ConceptNet. 87.3% of WordNet synsets, 78.6% of WordNet noun terms, and 87.9% of
ConceptNet concepts were found. WordNet’s noun term coverage is lower compared to synset
coverage, because often one synonym is found in SemNet, but other rare synonyms cannot be
found due to the threshold of at least 40 occurrences in the original Google N-gram dataset from
which SemNet was constructed. On the one hand, term coverage can be improved by creating
custom N-gram datasets based on other text corpora with lower thresholds. On the other hand,

105

this leads to a multitude of rare terms that rarely occur together with other terms, resulting in
poor PMI values for relationships. It must therefore be considered which goal is more important.

Dataset Quantity Contained
in SemNet

Percentage

WordNet Noun Synsets 57,059 49,827 87.3%
WordNet Noun Terms 77,554 60,956 78.6%
ConceptNet Noun Concepts 53,612 47,124 87.9%

All 188,225 157,907 83.9%

Table 4.18: Term coverage results for WordNet and ConceptNet

Relation Coverage. The results of the WordNet relationship evaluation are shown in Ta-
ble 4.19. In WordNet, noun synsets are connected with 11 different kinds of relationships. These
relationships are essentially four main types: is-a relationships (hypernym / hyponym), part-whole
relationships (meronym / holonym), antonyms and categorization relationships (category / mem-
ber). Relationships are modeled as unidirectional connections, so hypernym and hyponym have
the same number. This also applies to meronym / holonym and category relationships. There are
slight differences in the reverse direction, as some targets were filtered during dataset preparation
(see Section 4.5.2). The average coverage is relatively low at 56.3 percent. The only exception
is the antonym relationship (84.9% of the relationships could also be found in SemNet). The
main reason for this difference is the small context of five words in the Google N-gram dataset.
Antonyms usually appear closer together in natural language expressions, and hypernym / hy-
ponym relationships for normal nouns / concepts often require sentence-level analysis [120, 310],
which is not possible using fivegrams.

Relationship type WordNet SemNet Perc. Example

Hypernym 55,360 31,016 56.0% herring → saltwater fish
Hyponym 55,360 31,016 56.0% meal → afternoon tea

Meronym 5,512 3,139 56.9%
- Part Meronym 4,395 2,562 58.3% bowling → frame
- Member Meronym 452 239 52.9% family → child
- Substance Meronym 665 338 50.8% coffee → caffeine

Holonym 5,519 3,145 57.0%
- Part Holonym 4,404 2,570 58.4% antenna → transmitter
- Member Holonym 450 237 52.7% letter → alphabet
- Substance Holonym 665 338 50.8% clay → roofing tile

Antonym 1,976 1,678 84.9% dissonance → harmony

Category 3,003 1,549 51.6% split → tenpin bowling
Category Member 3,997 2,066 51.7% grammar → clause

All 130,727 73,609 56.3%

Table 4.19: Relationship coverage results for WordNet

The results of the ConceptNet relationship evaluation are shown in Table 4.20. There are a few
more than 22 relationship types, but we filtered all types that had fewer than 500 instances. On
average, 68.8 percent of ConceptNet’s relationships are contained in SemNet. In general, SemNet
performs better in the ConceptNet evaluation because both networks follow similar aims, namely
to build a network of conceptual terms and their relationships.

106

About half of ConceptNet’s relationships are classified as IsA-relationships, of which 61.2%
were also extracted by SemNet. The very good results for the relationships RelatedTo (83.2%)
and ConceptuallyRelatedTo (76.6%) support that our methods accomplish the identification of
semantically related terms. SemNet performs best at the relationships LocatedNear and HasA
(over 90 percent). HasA is primarily an attribute or ownership relationship and is often expressed
in terms that resemble for example ”the national anthem of the country”. Consequently, the
probability of simultaneous occurrence of these words in a five or six word window is higher.
Similar observations were made by Nulty et al. [311]. The Antonym relationship also scored very
good results for the same reasons as in the WordNet evaluation. Although it is questionable
whether this relationship should be modeled at all, the results of the NotIsA relationship are
also very good, in contrast to the IsA relationship. Looking closer at these relationships, one
can quickly see that the majority of instances of the relationship are similar to the RelatedTo
relationship. The connected words are correct for the NotIsA relationship but are mostly from
the same context (e.g., ”apple” NotIsA ”banana, cherry, citrus orange, vegetable”).

Relationship type ConceptNet SemNet Perc. Example

IsA 287,626 175,907 61.2% acid → liquid
AtLocation 59,033 42,735 72.4% alarm clock → bedroom
HasProperty 56,962 42,317 74.3% address → street name
ConceptuallyRelatedTo 35,274 27,023 76.6% art → gallery
RelatedTo 29,866 24,846 83.2% coat → cold weather
UsedFor 26,282 21,340 81.2% basement → storage
HasA 18,716 16,915 90.4% country → national anthem
LocatedNear 8,158 7,394 90.6% paper → printer
PartOf 10,017 7,161 71.5% keyboard → computer
Synonym 8,958 5,027 56.1% silence → quietness
CapableOf 4,963 3,813 76.8% scientist → research
NotIsA 4,548 3,679 80.9% daughter → mother
MadeOf 4,286 3,520 82.1% chocolate → cocoa bean
SimilarSize 2,845 2,436 85.6% mattress → bed
Causes 2,760 1,832 66.4% affair → divorce
Desires 2,083 1,818 87.3% person → acknowledgment
HasContext 4,308 1,723 40.0% crown → dentistry
ReceivesAction 1,957 1,496 76.4% king → overthrow
HasPrerequisite 1,571 1,165 74.2% fire → oxygen
Antonym 1,264 1,008 79.7% decrease → increase
HasSubevent 1,372 925 67.4% dream → eye movement
CreatedBy 720 636 88.3% electricity → generator

All 573,569 394,716 68.8%

Table 4.20: Relationship coverage results for ConceptNet

Relationship coverage can be improved by enlarging the analysis context. This is either possible
by creating custom N-gram datasets with a window size of seven (or even larger) or by directly
analyzing the original sentences of the corpus. Datasets with longer N-grams have the disadvantage
that the number of N-grams grows exponentially with the window size if not pruned at a certain
threshold. That is why there are hardly any datasets that go beyond a length of five [326]. In
addition, the threshold must be set so low that a large part of the N-grams occurs only very
few times. Thus, frequencies of the terms and all relatedness computations hardly have any
significance, and ranking of terms will be difficult. However, if all original sentences of the corpus
are processed (POS tagging, normalization, co-occurrence analysis), this means a much higher
computational effort than when using the N-gram dataset as a proxy.

In summary, the automated identification of semantically related terms shows very good results,

107

although only a context of six words is available for the extraction. Compared to manually created
knowledge bases with a few hundred thousand terms and relationships, SemNet comprises a variety
many times greater.

4.6 Working with SemNet

There are several ways of how to use SemNet. This section describes the interfaces that have been
developed to interact with the semantic network.

4.6.1 Data Serializations

We provide two different serializations of the SemNet graph. The first serialization is a relational
database in the SQLite format. The complete semantic network is contained in a single file. Each
edge of the graph is one row in a database table. It is not required to install any database server
or additional driver to use the database. A standalone client (also just a single precompiled file)
for several operating systems can be downloaded from SQLite website19. All major programming
languages (e.g., Java, PHP, Python) have available modules to access SQLite databases. Using
this format it is easy to embed SemNet into other applications that require ranked lists of related
terms or top-N recommendations. The database is publicly available for download20. It can be
queried using standard SQL statements.

As SemNet naturally is a graph, we also generated a Neo4j21 serialization of SemNet. The
Neo4j version requires an installation of the Neo4j community edition that runs a web interface
to browse the graph. Each term in SemNet is a node in the Neo4j graph. They are connected
with directed edges that have additional properties for frequencies, relative frequencies, PMI and
normalized PMI. The network can be queried using the Cypher graph query language.

4.6.2 Application Programming Interfaces

We have developed Java and PHP application programming interfaces to programmatically access
SemNet. The APIs provide methods for accessing SemNet’s vocabulary, retrieving related terms
from SemNet based on noun and verb inputs, and querying the semantic network for top-N
recommendations. The provided functions are in detail:

• getIdForTerm – retrieves the vocabulary identifier based on an input string

• getTermForId – retrieves the vocabulary term based on the input identifier

• contains – returns true if the input string is contained in the SemNet vocabulary

• searchTerm – retrieves a set of terms in which a (partial) input string is contained

• getRelatedNounTerms – retrieves a set of related noun terms for an input noun or verb term

• getRelatedVerbTerms – retrieves a set of related verb terms for an input noun term

• getRelatedTernaryTerms – retrieves a set of single terms or tuples of terms for input noun
or verb terms or tuples

The first three functions provide access to the vocabulary and the mappings of string terms to
identifiers that can be used in other functions. The searchTerm function allows to find vocabulary
terms by specifying substrings. The getRelated -functions determine the set of related terms for
the respective input terms depending on the type (noun or verb) and the cardinality (binary or
ternary). Each of the functions allows to rank the result sets based on the respective relatedness
measurements (absolute frequency, relative frequency, PMI, and normalized PMI).

19http://www.sqlite.org/
20http://semnet.henning-agt.de/
21https://neo4j.com/

108

http://www.sqlite.org/
http://semnet.henning-agt.de/
https://neo4j.com/

4.6.3 Web Interface

We also provide an online version of SemNet that allows to query related terms in a web interface.
The interface provides query forms for the four types of relationships of the semantic network (cf.,
Figure 4.11).

• Noun queries: Enter a noun term and retrieve related noun and related verb terms.

• Verb queries: Enter a verb term and retrieve related noun terms.

• Ternary noun queries: Enter one or two noun terms and retrieve triples of related noun
terms.

• Ternary noun-verb queries: Enter one noun term and a verb or enter two noun terms and
retrieve triples of noun pairs and related verbs.

Figure 4.11: Screenshot of SemNet’s web interface

By default, the query results are ordered in descending order according to the lexicographer’s
mutual information (LMI), that is, the absolute frequency multiplied by the normalized pointwise
mutual information. The website allows you to browse the semantic network directly by clicking
on the terms in the result lists. The term is then queried, and corresponding related terms are
displayed. The website can be accessed at http://semnet.henning-agt.de/.

109

http://semnet.henning-agt.de/

4.6.4 Top-N Examples

This section presents examples of SemNet by querying SemNet for terms with different degrees of
specificity and showing top-N related terms. We selected terms that are very common with very
high corpus frequencies (around 100 million occurrences), terms with high frequencies (around 10
million occurrences), terms with average frequencies (around 1 million occurrences), rare terms
with low frequencies (around 100 thousand occurrences), and very rare terms with very low fre-
quencies (around 10 thousand occurrences).

Table 4.21 shows the 10 most closely related noun terms for five noun terms with decreasing
degrees of specificity. f indicates the absolute corpus frequency of the query term. The last row
contains the total number of related noun terms connected to the query term.

patient emotion computer

science

concentrated

sulphuric

acid

photographic

paper

f 115M 10M 1.2M 114K 10K

1 family feeling engineering drop film
2 condition thought mathematics ml image
3 physician voice degree volume means of ink
4 symptom passion chemistry action stamp
5 care mind electrical

engineering
part sensitive surface

6 treatment expression information weight means of pressure
7 disease cognition physics heating drawing
8 doctor motivation economics cubic

centimeter
real image

9 age sensation computer
engineering

desiccator means

10 hospital intellect lecture note excess impression
.

118,149 19,741 903 124 97

Table 4.21: Top 10 related noun terms for the respective noun query terms with different corpus
frequencies in descending order

Table 4.22 presents the 10 most closely related verb terms for five noun terms with different
degrees of specificity. f indicates the absolute corpus frequency of the query term. The last row
contains the total number of related verb terms connected to the query term.

patient emotion computer

science

concentrated

sulphuric

acid

photographic

paper

f 115M 10M 1.2M 114K 10K

1 have express major add record
2 treat be study dissolve expose
3 suffer feel concern heat print
4 complain overcome teach treat sensitise
5 die control include contain impregnate
6 place arouse deal boil moisten
7 ask choke train dilute coat
8 instruct experience attempt moisten saturate
9 see conflict imperil warm soak
10 occur tremble hope pour dip
.

3,329 1,888 240 62 68

Table 4.22: Top 10 related verb terms for the respective noun query terms with different corpus
frequencies in descending order

110

Table 4.23 presents the 10 most closely related noun terms for five different verb terms with
different degrees of specificity. f indicates the absolute corpus frequency of the query term. The
last row contains the total number of related noun terms connected to the query term.

increase generate fetch decode reformulate

f 110M 10.9M 1M 105K 11K

1 number heat water message term
2 risk electricity high price bit conventional

gasoline
3 size income price receiver problem
4 amount data good price unit policy
5 rate revenue doctor speech way
6 demand random number instruction cue question
7 likelihood process deep sigh rule light
8 population order home soviet espionage issue
9 pressure ability glass ability fuel
10 efficiency magnetic field kitchen instruction theory
.

150,124 40,620 4,804 844 347

Table 4.23: Top 10 related noun terms for the respective verb query terms with different corpus
frequencies in descending order

Table 4.24 presents the 10 most closely related triples with noun terms (ternary relationships)
for the respective query noun terms. The numbers in brackets indicate the absolute corpus fre-
quency of the query term. The last row contains the number of total triples that contained the
query term.

patient (115M) pregnancy (4.3M)

1 diabetes patient type pregnancy delivery labor
2 alzheimer disease patient pregnancy breast woman
3 crohn disease patient incest rape pregnancy
4 hodgkin disease patient lactation pregnancy use
5 symptom sign patient uterus contraction pregnancy
6 morbidity mortality patient cervix carcinoma pregnancy
7 cushing syndrome patient infanticide abortion pregnancy
8 graves disease patient pregnancy drug birth defect
9 neck patient head nausea vomiting pregnancy
10 caution patient use childbirth pregnancy effective care
. .

206,270 16,850

soybean (1M) tree house (104K)

1 soybean wheat corn arsenal fort tree house
2 sorghum soybean oats quay fort tree house
3 soybean vegetable corn settlement tree house church
4 soybean corn cotton stone tree house church
5 soybean alfalfa oats opera tree house church
6 soybean oats maize apartment tree house church
7 sorghum soybean peanut expensive tree house car
8 soybean corn plant permanent tree house road
9 sorghum soybean alfalfa dwelling tree house church
10 soybean maize potato domed tree house church
. .

4557 13

Table 4.24: Top 10 related triples of noun terms for the respective noun query terms with different
corpus frequencies

111

Table 4.25 presents the 10 most closely related triples with subject-predicate-object terms
(ternary relationships) for the respective query noun terms. The numbers in brackets indicate the
absolute corpus frequency of the query term. The last row contains the number of total triples
that contained the query term.

patient (115M) pregnancy (4.3M)

1 supine lie patient pregnancy delivery labor
2 pain complain patient pregnancy breast woman
3 patient acquire immunodeficiency

syndrome
incest rape pregnancy

4 patient have right lactation pregnancy use
5 patient complain pain uterus contraction pregnancy
6 patient be supine cervix carcinoma pregnancy
7 history have patient infanticide abortion pregnancy
8 patient acquire immunodeficiency pregnancy drug birth defect
9 patient admit hospital nausea vomiting pregnancy
10 patient represent percent childbirth pregnancy effective care
. .

311,159 13,704

soybean (1M) tree house (104K)

1 soybean be glycine max side expose tree house
2 sunflower

seed
sesame soybean tree house be wood

3 soybean dry oils carpenter build tree house
4 corn be soybean tree house climb sailor
5 soybean paste miso tree house appear wood
6 soybean be crop ball be tree house
7 sugar

beet
hop soybean distance appear tree house

8 crop grow soybean tree house discover travel
9 soybean be field of corn garden be tree house
10 soybean develop expert system wood be tree house
. .

487 27

Table 4.25: Top 10 related triples with subject-predicate-object terms for the respective noun
query terms with different corpus frequencies

4.7 Summary

In this chapter, we presented the detailed approach of how to extract semantically related terms
from a large-scale N-gram dataset to create a semantic network of terms (SemNet) for virtually
every possible domain. The N-grams serve as proxies for a large text corpus, so it is not necessary
to process the complete original sentences. At the same time, they provide absolute frequencies of
recurring phrases and co-occurring terms that can be used to derive the degree of relatedness be-
tween them. Terms and multiword expressions (MWEs) were extracted using a set of 25 syntactic
part-of-speech patterns used on preprocessed fivegrams of the Google Books N-gram dataset. The
syntactic category (noun/ verb) of the terms is retained throughout the extraction process and
named entities are explicitly excluded. Therefore, SemNet contains almost exclusively conceptual
terms and expressions. Relationships are identified by applying a hierarchical pattern matching
to the fivegram elements and recording the absolute frequencies of co-occurring terms in different
contexts. Since the five-word window limits the extraction of noun-noun relationships to a maxi-
mum of three-word terms and allows only a very limited extraction of noun-verb relationships with
four words, we have extended the context by generating a sixgram dataset from the fivegrams.
To prevent the combinatorial explosion of the search space, some effective heuristics have been
developed to produce only useful sixgrams that contain conceptual terms. This not only increases
the number of recognized terms by more than 60%, but also leads to additional relationships of
more than an order of magnitude. SemNet includes nearly 6 million nouns, noun phrases and
verb terms, as well as over 355 million binary and ternary relationships. Each relationship is

112

quantified using common relatedness measurements that allow to directly answer top-N queries.
The evaluation shows that SemNet can detect over 80% of the terms, on average over 65% of the
relationships, and on average around 80% of the related-to relationships contained in manually
created knowledge bases. SemNet is made available online22.

22http://semnet.henning-agt.de/

113

http://semnet.henning-agt.de/

114

Chapter 5

OntoConnector: Integration of
Lexical Knowledge Bases

The previous chapter developed automated methods for extracting semantically related terms that
help to create a rich conceptual knowledge resource with millions of terms and hundreds of millions
of relationships. It provides an unprecedented amount of lexical information classified with infor-
mation theory measurements. However, with the techniques used for extraction, the types of the
relationships cannot be determined more closely. In contrast, knowledge bases that use RDF typ-
ically encode domain knowledge using specific relationships with well-defined meaning and rarely
include probabilistic weights. As this type of information is required to support domain modeling,
this chapter examines structured knowledge bases with respect to the contained lexical knowledge.
Consistent access to this information in a combined way is challenging, because knowledge bases
exist in a distributed fashion, provide different access methods, syntactically encode information
using different data models, and semantically describe the content in various ways. This chapter
develops new methods and tools for transparent access to lexical information in knowledge bases,
addressing the second challenge of this thesis: the heterogeneity of knowledge bases.

5.1 Introduction

In this chapter we describe how lexical and conceptual knowledge contained in existing knowl-
edge sources is used to support domain modeling. We detail the development of OntoConnector,
a component responsible for querying heterogenous knowledge bases, for extracting the lexical
information, for integrating the results, and for transforming the results into appropriate repre-
sentations to be used for domain modeling.

The chapter is structured as follows: In Section 5.2 we review related approaches to knowledge
integration. Section 5.3 describes the general procedure of using knowledge bases for modeling
suggestions. Section 5.4 shows how lexical and conceptual knowledge is organized in different
knowledge bases using standard and proprietary data models. In Section 5.5 we detail our solution
of a mediator-based architecture to provide uniform access to heterogenous knowledge bases. We
exemplarily have selected three knowledge bases that represent widely used data models and
develop their integration in Section 5.6. In Section 5.7 we describe how intermediate results of
different knowledge bases are integrated. Finally, from the exemplary integration we derive a set
of templates for the easy integration of other knowledge bases that use the same or similar data
models (cf., Section 5.8).

5.2 Related Knowledge Integration Methods

OntoConnector aims to leverage lexical and conceptual knowledge from heterogeneous knowledge
bases. The provision of unified access to these sources can be exploited through approaches from

115

four main categories: methods for deriving alignments between knowledge bases, approaches with
a translator, methods for creating centralized data sources, and methods for jointly querying
multiple knowledge bases.

5.2.1 Ontology Matching

Ontology matching, often referred to as ontology alignment, is the process of finding correspon-
dences between entities, classes, and properties of the respective knowledge bases [327]. An align-
ment is a set of correspondences, often encoded as a set of RDF statements with binary relation-
ships (e.g, using owl:sameAs, owl:equivalentClass, rdfs:subClassOf, rdfs:subPropertyOf, owl:equi-
valentProperty, skos:exactMatch, skos:closeMatch) or using dedicated languages (e.g, EDOAL,
SEKT, SKOS, OWL, SWRL). There are some systems that can also create complex alignments,
but this area is still subject of research (see the recently published report of the Ontology Align-
ment Evaluation Initiative (OAEI) 2018 [328]). The AgreementMakerLight (AML) [329] system
delivered the best overall performance in most of the tasks in recent OAEI competitions. Re-
cent comparisons of ontology matching systems have been done by Shvaiko & Euzenat [307] and
Otero-Cerdeira et al. [330]. An alignment can either be used to translate a knowledge base into
a target representation, to merge knowledge bases, or to implement the answering of queries. In
general, ontology matching is applicable to overcome the heterogeneity of lexical and conceptual
knowledge bases. However, this is not feasible in our environment. It would be necessary to match
each knowledge base with all others, or to use a knowledge base as a reference, and all others are
reconciled. In addition, the process must be repeated for each new knowledge base to be connected
to the system. The effort would be too big, for example, matching large ontologies with millions of
instances, such as YAGO and DBpedia, takes 5-11 hours, even in highly-optimized systems [331].
In addition, matching is only applicable to the content of a knowledge base that has counterparts
in another knowledge base. The goal of OntoConnector is to integrate complementary knowledge
distributed in heterogeneous knowledge bases.

5.2.2 Knowledge Translation

Knowledge translation is an approach in which a schema or intermediate knowledge base acts as a
translator between different knowledge bases. It is mainly applied in scenarios where semantic het-
erogeneity cannot be resolved by ontology matching systems. This semantic heterogeneity usually
occurs when n-ary facts are formulated [332] (e.g., events with date, place, and people involved).
These facts can be modeled in many different ways with the RDF data model. FrameBase [333]
provides a knowledge base schema that uses linguistic frames for a more concise representation of
n-ary relationships. The integration of knowledge bases is achieved by transforming the respective
instances into FrameBase instances using integration rules. These integration rules have to be
developed manually and can partially be generated automatically [334]. Although the lexical in-
formation we need for domain modeling can be represented without n-ary relationships (or without
the respective triple patterns), applying this approach would cost too much effort. Nevertheless, it
is an interesting opportunity to represent relatedness values and ternary relationships of SemNet
(cf., Section 4.3.11).

5.2.3 Data Centralization

Data centralization is an option to create a consolidated knowledge base from multiple sources
to provide centralized access to the information. Although the Semantic Web is generally based
on a linked decentralized architecture, it may be necessary to create such data warehouses and
provide appropriate linked data interfaces, which is often the case in companies [335]. The meth-
ods involved are very similar to traditional database management systems and data warehouses,
which implement an Extract, Transform, Load (ETL) process and also provide Online Analytical
Processing (OLAP). The RDF Data Cube Vocabulary1 is the linked data representation of the

1https://www.w3.org/TR/vocab-data-cube/

116

https://www.w3.org/TR/vocab-data-cube/

multi-dimensional data model in data warehouses. For our purposes, it is not feasible to copy
and transform the complete data of existing knowledge bases because developing a domain model
requires only a small portion of it. In addition, this would prevent the most recent versions of
knowledge bases from being used without repeating the ETL process over and over again.

5.2.4 Query Federation

Query federation deals with integrated access to distributed RDF data sources using transpar-
ent SPARQL queries. Federated querying of RDF datasets is based on the concepts of federated
databases and federated information systems [99], and mediator-based information systems [336].
Our OntoConnector implements a very similar architecture (see Section 5.5). A common workflow
for processing distributed RDF queries in the literature [337] is: (1) Parsing: A SPARQL query is
parsed and decomposed into triple patterns. (2) Query Planning: This step involves creating sub-
queries and selecting the sources (to which endpoints the sub-queries will be submitted). Sources
may be determined at run time or set in advance, for example, using the Service operator of the
SPARQL 1.1 Federated Query extension2. (3) Optimization: A query execution plan is generated,
including, for example, rewriting queries or determining join orders as in conventional database
systems. (4) Query Execution: Subqueries are executed from the respective data sources, and
the results are integrated. Federation systems research in recent years has focused mainly on the
planning and optimization steps (see recent surveys by Saleem et al. [338] and Wylot et al. [339],
and systems like HiBISCuS, FedX, SPLENDID). Compared to the query framework described
above, our goal is not to formulate integrated SPARQL queries but rather rely on a separated
execution approach [340]. This gives us more flexibility in adding and removing knowledge bases
to the system. We only use the default federated query extension and the SPARQL-LD extension
to integrate non-SPARQL endpoints (see Section 5.8.4).

5.3 General Querying Procedure

Figure 5.1 gives an overview of our approach. (1) Domain models under development contain
domain-specific terms as well as relationships and are monitored for changes. For each relevant
change (e.g., a class / relation has been created or renamed – see Section 3.4 for the full list of sup-
port scenarios), the domain terminology is extracted from the model into a lexicon representation.
OntoConnector’s task is to gather information about related domain model elements. (2) Based
on the scenario and the extracted expressions, technology-independent queries are generated (for
example: retrieve all the narrower terms of a class name). (3) Each registered knowledge base
normally incorporates its own data model. Therefore, technology-independent queries are trans-
lated to knowledge base specific queries and executed. (4) The execution and retrieval of the
result is done on a mediator basis. The original content of the knowledge base is wrapped and
remains unchanged. For each of the queries and for each knowledge base, the results are retrieved
separately. (5) The result integration is performed per query type (e.g., subclass query results of
the knowledge base 1..n) and translated back to the lexical representation. (6) The results are
processed and mapped to the respective modeling language constructs and are offered as recom-
mendations in the frontend. (7) The developer can use the suggestions and refines the domain
model according to his needs. Then the process starts again from the beginning. Except for the
refinement step, the procedure is completely automated.

5.4 Sources of Modeling Knowledge

In this section, we introduce three knowledge bases that have been selected by way of example as
representatives of specific data models. We chose WordNet, OpenCyc, and ConceptNet because
they come closest to the conceptual and common sense knowledge that is required to support
domain modeling.

2https://www.w3.org/TR/sparql11-federated-query/

117

https://www.w3.org/TR/sparql11-federated-query/

������

Nurse

�

D N

�������

(1)

��������

(2)
D

�

N
� ������e

(3)

���������
Bases

������
Model

������
Terminology

�����es

D
N

S

A

Retrieve

(4)D

S

D

A

G

Results

���� ���e

(5)

S

D

A

GSuggest

(6)D N D
¡ G
¡ S
¡ A

¢���������
Results

£����
Recommendations

(7)
Refine

Figure 5.1: Automated procedure of querying semantic knowledge bases to provide model element
suggestions

5.4.1 Lemon-Based Lexicons: WordNet

WordNet is a lexical database for the English language [108]. It models synsets that group words
that have the same meaning. It contains word senses for nouns, verbs, adjectives and adverbs
(over 117,000 synsets in total). Most of the information relates to nouns (82,115 noun synsets).
WordNet mainly covers synonymous, taxonomic and part-whole relationships, and to some extent
instance knowledge. It was created manually, thus featuring high quality structured information
on lexical relationships. In the last decade, WordNet was refined and updated several times (latest
version is V3.1). It can be downloaded and queried through a web interface3.

The original WordNet, developed by Princeton University, is based on a proprietary data
model that uses a series of ASCII files4. Several efforts have been made to represent WordNet
directly as RDF5. A few years ago, WordNet was published as a lexical resource as part of the
Linguistic Linked Open Data Cloud [306]. This version of WordNet uses lemon [341], a model for
representing ontology dictionaries and lexicons. Lemon is an important resource for publishing
lexical resources on the Web and is still being developed in the W3C OntoLex group6.

Figure 5.2 shows the core model of the lemon and its relationship to the WordNet ontology.
Words are represented as LexicalEntry from the lemon model. A lexical entry can have multiple
meanings (LexicalSense). A sense refers to a Synset in the actual WordNet ontology. A synset
groups all words that have the same sense, using the synset member relationship. Synsets can be
related by taxonomic relationships (hyponyms, hypernyms) and several other relationships (e.g.,
instance and part-whole relationships, not shown in the picture).

In Figure 5.3 we give an example of how the words doctor and dentist are modeled in WordNet-
lemon. The word doctor has several meanings. Two of the lexical senses (1-n, 4-n) are shown in
the figure. The first meaning is a person who holds a PhD (synset 617). The second meaning is
the medical doctor (synset 615). The words doctor and physician are members of the same synset
and thus being synonyms. The word dentist has only one meaning and belongs to synset 944.
Both the medical doctor synset and the dentist synset have a common hypernym (synset 469).
This means that the broader term for them is the word medical doctor.

3http://wordnetweb.princeton.edu/perl/webwn
4https://wordnet.princeton.edu/documentation/wnintro5wn
5https://semanticweb.cs.vu.nl/lod/wn30/, https://github.com/jrvosse/wordnet-3.0-rdf , and

https://www.w3.org/TR/wordnet-rdf/
6https://www.w3.org/2016/05/ontolex/

118

http://wordnetweb.princeton.edu/perl/webwn
https://wordnet.princeton.edu/documentation/wnintro5wn
https://semanticweb.cs.vu.nl/lod/wn30/
https://github.com/jrvosse/wordnet-3.0-rdf
https://www.w3.org/TR/wordnet-rdf/
https://www.w3.org/2016/05/ontolex/

¤¥¦§¨©ª«¥¬¥¤¥¦§¨©ªEntryLexicalForm
form

®¯°±²¯±³´

sense

canonicalForm

otherForm

abstractForm

µ¶·¸¹¸º»

®¯¼±´±½±²¾±³´

½±´±½±nce

¤¥¦§¨¿¬

±²À½Á

Â¿ÃÄ ÅÆÃ©¥ Å©ÃÇ

«È¬¥Çsynset_member

hypernym

hyponym

...

Figure 5.2: The core lemon model (after [342]) and relationships to the WordNet model

medical

practitioner

synsetÉ

ÊËÊÌËÍ

ÎÏÐÑ

ÎÐÒÓ

ÎÑÏÏ

ÔÕÕÔÖ

×ÕØÔÕÙ

×ÚÛÔÜÝÔ

ÞßàÞËáÉ

ÊËÊÌËÍ
âßãËÍàßÊ

äÖåÝÜØÜæÛ

ÞßàÞËáÉ

ÊËÊÌËÍ

×ÕØÔÕÙ

çèéêëì

íëîïðñò

óéìôè

Òõn

senseÏõn

a licensedö÷øùúûü
practitioner

gloss

ÎÐÒý

ÍËþ

ÿÙD

a person who

h�üø� �h��� ø÷��ee

gloss

synset_

member

refíëîïðñò

Sense

String

a person qualified

to practice denti�s��
gloss

hypernym

ÞßàÞËáÉÊËÊÌËÍ

Figure 5.3: Excerpt of WordNet: Relationships between the word doctor and dentist. For reasons
of readability we simplified some details of the model

5.4.2 OWL Schemata: OpenCyc

Cyc is a common sense ontology [112]. Its development began in 1984 to formalize a large amount
of knowledge facts in machine-readable format. While WordNet mainly models concepts and their
lexical relationships, Cyc also encodes some additional facts about concepts and appropriate rules
to enable reasoning. OpenCyc is the publicly available version of Cyc, which contains only part
of the rules. Cyc originally used a proprietary language (CycL) and a schema for knowledge
modeling. Later it was converted into an OWL ontology. We chose OpenCyc to use it for domain
modeling support because it is a popular representative of conceptual knowledge coding in an
ontology schema.

O�	

Class
Concept

Second Order

Collectionrdf:type

Vocabulary

Topic rdf:type

Instance

rdf:typeOwl

Individual

Figure 5.4: OpenCyc’s data model based on OWL

Figure 5.4 shows in general how OpenCyc organizes its content. The OWL representation of
OpenCyc models concepts as OWL classes. Concepts are first-order collections, so their instances
are OWL individuals. Each concept has a label and zero or more synonym terms (not shown in the
figure). In the case of a homonymous term, separate concepts are modeled. The predominant re-

119

lationship between concepts is the RDFS subclass relationship to express taxonomic relationships.
OpenCyc also models second order collections (the type of concept). Because they group similar
concepts, concepts are instances of these collections. In addition, OpenCyc contains information
about topics of a concept (also expressed by an RDF type relationship). Second order collections
and topics are also organized with taxonomic relationships.

In Figure 5.5 we review the WordNet example of doctor and dentist in OpenCyc. The doctor
(in the medical sense) is represented as OWL class Doctor Medical. OpenCyc does not have a
concept for a person who holds a PhD, but a concept for the doctoral degree itself (not shown in
the picture). Both the Doctor Medical and the Dentist have the same super concept Prescriber (a
person who can prescribe medication). The Prescriber is a sub-concept ofMedicalCareProfessional.
A synonym for it ismedical practitioner. Compared to WordNet, the information on the doctor and
the dentist is similar (both are medical practitioners). In addition, both the doctor and the dentist
are instances of the second-order collection MedicalSpecialistType. This means that they belong
to the group of medical specialty (e.g., dermatologists and x-ray specialists are other specialties).
Furthermore, the concepts are also classified according to their topic. Both the doctor and the
dentist are examples of Medical Topic, which is a Healthcare Topic. For example, the medical
topic also includes the concepts Nurse and Pharmaceutical Product.

����_

M����al

����

d����� rdfs:label

dentist

tooth doctor

Prescriber

�dr�����������r

M����alCare

P��������� !
m"d#���

p����#�#�t"r �dr�����������r

$%&

Class

S���'

p()�#�#an

p�"��)y��#ng

�dr�����"�

p�"��)y��#ng

m"d#��� ���"

p��r"��#�t��

�dr�����"�

p�"��)y��#ng

M����al

S*��� !��+,*�

�dr��)p" �dr��)p"

m"d#���

�p"�#���) �dr�����"�

M���� !_

+�*��
�dr��)p"

H� !-� ��_

+�*��

�dr�����������r

Figure 5.5: Excerpt of OpenCyc: Relations between the concept doctor and dentist

5.4.3 Proprietary Models: ConceptNet

ConceptNet is a ”large semantic graph that describes general human knowledge” [113]. It also aims
to create a large semantic database of common sense knowledge. ConceptNet focuses on multilin-
gualism and the integration of multiple sources of knowledge. It was created based on manually
developed projects (e.g., Open Mind Common Sense7 and Wiktionary8) and on automatically
generated knowledge sources (e.g., ReVerb [118]).

The ConceptNet data model is very simple: it is a directed labeled graphic. The nodes of the
graph are words or short phrases in natural language (the concepts), and the edges are labeled
links (the assertions) that express the relationship between the concepts (e.g., IsA, UsedFor,
CapableOf). The relationships have additional attributes, such as the source of the assertion or
text fragments in which the concepts occur. Relationships can be reified. Concepts do not have
type or lexical information. ConceptNet can be queried via a REST API or a web interface.
The serialized version of it uses a CSV format. To some extent, ConceptNet supports links to
semantic web resources (such as the RDF version of WordNet or DBpedia), but to the best of our

7http://csc.media.mit.edu/
8https://www.wiktionary.org/

120

http://csc.media.mit.edu/
https://www.wiktionary.org/

knowledge, there is no Linked Data version of ConceptNet available online that could be queried
using SPARQL9.

Figure 5.6 shows the data model of ConceptNet and parts of the graph for the concept doctor.
Both the concept doctor and dentist are nodes in the knowledge graph. The syntax of the node
ID specifies a concept (/c/) and indicates English language (/en/). They are connected with
a relationship called IsA (identifier begins with /r/). Attributes of the relationship include the
sources of assertion, the text in natural language in which both concepts appear, and some other
fields, e.g. license and dataset information. The third concept, help sick person, shows what
kind of information ConceptNet allows. This concept is a sentence in natural language and the
relation is neither taxonomic nor a part-of relationship compared to the prevailing relationships
and WordNet and OpenCyc. Although the name of the relationship is IsA and the surface text
[[a dentist]] is [[a doctor]] implies that doctor is the broader concept of dentist, ConceptNet does
not contain a precise definition of its relationships.

ConceptConcept

relation name

Attributes

/./01/23.435/./01/2014674
/5/I78

/./01/help9

76.:9;05son

/5/CapableOf< weight: 4.169925...

- surfaceText: "[[a

dentist]] is [[a doctor]]“

- sources: ...

...

(a) C=>?@ABE@BFG gJKAL data N=Q@R TUV W@RKB@Q concepts of �doctor“

Figure 5.6: ConceptNet’s data model and an excerpt of the graph for the concept doctor

5.5 Mediator-Based Approach

In the previous section, we described knowledge bases that have similar goals: they encode concep-
tual, common sense, and lexical knowledge in machine-readable format. They all contain valuable
information that can be used to support domain modeling. The biggest challenge in using these
sources of knowledge is the lack of unified access to them. Heterogeneous data models prevent the
knowledge databases from being consistently queried. In addition, the same information is repre-
sented differently. Information about terms and their relationships exists at the schema level, in
proprietary intermediate data models, and at the instance level. To make the information available
jointly for domain modeling, several steps must be taken.

One possibility would be to manually study the knowledge bases and use the information di-
rectly to refine the domain models under development. This is a time-consuming process: all
intended knowledge bases must be searched for relevant terms and the results must also be inte-
grated manually.

A second option is the integration of the respective knowledge base in order to create a com-
mon, more comprehensive knowledge base that can be used to support the modeling. The problem
of different data representations has been well studied in the areas of data and information in-
tegration [346] and ontology alignment [330, 307]. In general, this solution is possible, but it is
necessary to know all knowledge bases and their data models in advance for full integration. In
addition, the alignment and integration of large knowledge databases is computationally expen-
sive. For our purposes, these methods are impractical because we only need specific small parts
of a set of knowledge bases, depending on the terms contained in a domain model.

We propose a mediator-wrapper solution to implement the knowledge base querying. A me-
diator allows the interaction of a user or system with heterogeneous data sources in a uniform
way [347]. Knowledge bases remain as they are, a wrapper is responsible for content translation,

9There are some works [343, 344] about encoding ConceptNet in RDF, but they still face issues with a succinct
representation [345].

121

and the mediator provides a single point of access to the information for the modeling recom-
mendations. Figure 5.7 shows the architecture of our approach. We differentiate between three
different layers.

XYZ[\]^`]
abc] 1

e

r

a

p

p

e

r

...

XYZ[\]^`]
abc] n

e

r

a

p

p

e

r

Mediator

fijklnoqnubaseu

specific layer

Terminologyu

specific layer

Modelingulanguageu

specific layer

Recommender

Mapper
Modeling

Tool

Figure 5.7: Three layer mediator-wrapper architecture

In the modeling-language-specific level, the developer uses the modeling tool and interacts with
the recommender. This layer treats elements such as classes and associations, and the recommender
proposes these types of elements based on the content of a model.

The mediator and the mapper are in the terminology-specific level. Domain-specific terms
used in a model are relevant in this layer (e.g., nouns and their related terms). The mediator
is responsible for translating terminology-specific content into the modeling layer and vice versa.
It also manages a set of knowledge bases and their corresponding wrappers and sends queries to
them as needed. The mapper collects and integrates results of the wrappers and provides the
information to the mediator.

In the knowledge-base-specific layer, the wrappers communicate with the knowledge bases.
Each wrapper must handle different query languages and formats (such as OWL, RDF, SPARQL,
JSON) and different types of modeling (e.g., graphs, concepts, synsets).

The advantage of our architecture is that only a specific set of queries needs to be developed
for a small portion of the information from each knowledge base and a mapping of the results. The
OntoConnector component supports the automated integration of these types of data models
without any development effort, as we exemplarily integrated WordNet and OpenCyc, based on
these models:

• Ontology schemata: concepts and relationships modeled using OWL or RDFS classes and
object properties

• SKOS-based vocabularies: terms modeled with concepts and broader, narrower, and related
relationships [265]

• Lemon-based knowledge bases: a specific vocabulary for modeling lexicons of ontologies [297]

If none of these data models are present, we support semi-automatic integration of any
knowledge base that offers a SPARQL endpoint. The effort to add a new knowledge base to the
system is relatively small, it is only necessary to specify a small set of queries for taxonomic,
part/whole, related and verbal relationships, as we show in the next section.

122

5.6 Knowledge Base Specific Queries

In this section, we describe in detail how the wrappers implement knowledge base specific queries
for each knowledge base and how the results are mapped to the terminology specific layer. Fig-
ure 5.8 shows the kind of data that is exchanged between the components of our mediator-wrapper
architecture. (1) Each of the wrappers is able to process knowledge base independent queries. The
mediator submits the queries to the wrappers with the input terms. (2) The wrapper executes
the respective knowledge base specific query using the provided query language (e.g., SPARQL
or via HTTP REST interfaces). (3) The knowledge base returns a result set using the provided
result language (e.g., XML or JSON). (4) The wrapper extracts the terminology information and
returns it to the mapper. (5) The mapper integrates all intermediate result sets and returns the
result back to the mediator.

v

r

a

p

p

e

r

Knowledge
wxz{ n

Mediator

Mapper

|}~������ �ase Independent ����y:

GetNarrowerTerms(...)
SPARQL Query:

select ?concept where {...}

XML Result Set:

<head> <variable

name=„concept"/>

...

Terminology Result Set:

surgeon

allergist

...

Integrated Terminology

Result Set:

allergist

surgeon

attending physician

neonatal perinatal specialist

...

(1) (2)

(3)
(4)

(5)

Figure 5.8: General approach of translating knowledge base independent queries to knowledge
base specific queries

The following section is an overview of the steps that each wrapper implements, and after that
the technical details regarding each knowledge base are presented.

5.6.1 Query Procedure

Input to a wrapper and thus input to a knowledge base specific query are one or more noun / verb
terms of the terminology-specific layer. The terms, if present in the respective knowledge base, are
represented by a particular object depending on the particular data model. The following steps
are performed when a term is requested.

Keyword Search. To find related terms for an input term, the term is searched for presence in
a knowledge base. Usually, terms are encoded as string label, name, or identifier of a knowledge
base object (e.g. ”doctor”).

Target Object Retrieval. Once the object has been identified, it is retrieved along with its
properties (e.g., the concept ”Medical Doctor”).

Related Object Retrieval. The knowledge base is queried for related objects that match a
specific relationship.

Term Retrieval. The terms used for the associated objects are determined.

123

Filtering. This optional step excludes related objects and / or terms from the results that meet
certain criteria.

5.6.2 WordNet Specific Queries

In Section 5.4.1 we described the data model of WordNet and gave an example of how terminology
is represented and linked in the knowledge base. The most important concept of WordNet is that
words are modeled separately and grouped in synsets (the senses). Words can have multiple
meanings (homonyms) and can belong to more than one synset. Semantic relationships (e.g.,
hypernym/hyponym) connect synsets and not words. Therefore, it is first necessary to search for
the words and then to determine the respective synset in order to query related terms.

��������

�������n

lemon:

������������

��������

¡��������¢��£
lemon:

¤¥¦§¦¨¤¥©ª§�«

¬¢

¬�®�¯���

Literal
°������°±��²

lemon:

³�¨���¦´��

µ�������

ontology:

noun
³§��¦��¶ontology:

�¥��·§�·¸���¤¹

lemon:

¢��£

��������

´ºª »�§���ty

Figure 5.9: Lexical entries in WordNet RDF

Keyword Search. Figure 5.9 shows an example of how the noun ”doctor” is modeled in Word-
Net RDF. The doctor-n object is classified as a LexicalEntry from the lemon model. The lexical
entry has a noun part of speech relationship to the WordNet ontology. The noun has a canonical
form, and its written representation is ”doctor” in English. To find the appropriate nouns in
WordNet RDF, we must search for canonical forms that contain a written representation with the
keyword, and then retrieve the lexical entries that belong to the canonical forms. Please note that
nouns, verbs and adjectives can have the same written representation. For this reason, the part
of speech must be included in the query.

Listing 5.1 shows our SPARQL query for WordNet RDF10 that returns a lexical entry for the
corresponding keyword ”doctor”. Since the lexicon is separately modeled by WordNet, this query
should always return exactly one noun for a given keyword11. Lines 1-3 define abbreviations for
the respective knowledge base URIs. Line 5 returns a variable for the noun, line 6 filters all forms
that are equal to ”doctor”, line 7 retrieves the lexical entries of the forms, and line 8 filters for
nouns. The query result is shown in line 11 of the listing.

1 PREFIX lemon : <http :// lemon−model . net / lemon#>
2 PREFIX wordnet : <http :// wordnet−r d f . p r in ce ton . edu/>
3 PREFIX wordnet−ontology : <http :// wordnet−r d f . p r in ce ton . edu/ ontology#>
4

5 s e l e c t ?noun where {
6 ? form lemon : writtenRep ” doctor ”@eng .
7 ?noun lemon : canonicalForm ? form .
8 ?noun wordnet−ontology : p a r t o f sp e e ch wordnet−ontology : noun .
9 }

10 −−
11 http :// wordnet−r d f . p r in ce ton . edu/wn31/doctor−n

Listing 5.1: WordNet SPARQL query that retrieves nouns for the keyword ”doctor”

10The SPARQL endpoint of WordNet RDF is available at http://wordnet-rdf.princeton.edu/sparql/
11Note that written representation is case-sensitive. In WordNet, there is a second noun ”Doctor” that is not

retrieved by this query.

124

http://wordnet-rdf.princeton.edu/sparql/

Target Object Retrieval. The next step is to determine the synset of the noun in WordNet.
Many words have multiple meanings and therefore belong to multiple synsets. In this paragraph,
we describe a simple version of the object retrieval that always uses the most commonly used
synset. We also implemented an advanced version for retrieving related objects that takes other
domain model terms as context. It determines the best matching synset based on the context
words. Figure 5.10 shows how senses of a noun and reference to synsets are modeled in WordNet
RDF. The lexical entry doctor refers to two senses ”1-n” and ”4-n” (there is also a third sense,
which is not shown in the picture). Every sense has a number and refers to the corresponding
synset of WordNet.

doctor-n

¼½¾

¼¿ÀÁÂÃÄ¿

Literal

Å-n

lemon:sense

Æ-n

lemon:sense

lemon:

Ç¿ÈÉÄÊËSense

ÌÍÎÏÐÑÒÓ

Å
ÔÕÌÍÖÓÐ-ontology:

×ÓÖ×ÓØÖÙÚÛÓÌ

ÅÅÜÜÆÜÝÅÞ-n

lemon:reÎÓÌÓÖßÓ

àÁÃáâ¿ã-

ontology:

Synset

ÌÍÎÏÐÑÒÓÅÅÜÜÆÅÝÅä-n

lemon:reÎÓÌÓÖßÓ
ÌÍÎÏÐÑÒÓ

Æ

åæç èÌÕÒÓÌty

ÌÍÎÏÐÑÒÓ

ÔÕÌÍÖÓÐ-ontology:

×ÓÖ×ÓØÖÙÚÛÓÌ

Figure 5.10: Multiple senses of lexical entries and their references to WordNet RDF synsets

In WordNet, the most common sense is always the first sense. Listing 5.2 shows a sample
query that retrieves the first synset of the word ”doctor”. The query extends the previous query
by lines 9-11, where all senses are matched and filtered by the sense number, and the reference to
the synset is returned. The result of this query (line 14) is the synset 110040615-n.

1 PREFIX lemon : <http :// lemon−model . net / lemon#>
2 PREFIX wordnet : <http :// wordnet−r d f . p r in ce ton . edu/>
3 PREFIX wordnet−ontology : <http :// wordnet−r d f . p r in ce ton . edu/ ontology#>
4

5 s e l e c t ? synse t where {
6 ? form lemon : writtenRep ” doctor ”@eng .
7 ?noun lemon : canonicalForm ? form .
8 ?noun wordnet−ontology : p a r t o f sp e e ch wordnet−ontology : noun .
9 ?noun lemon : sen se ? sen se .

10 ? sen se wordnet−ontology : sense number ”1”ˆˆ< http ://www.w3 . org /2001/XMLSchema
#intege r >.

11 ? sen se lemon : r e f e r e n c e ? synse t .
12 }
13 −−
14 http :// wordnet−r d f . p r in ce ton . edu/wn31/110040615−n

Listing 5.2: WordNet SPARQL query that retrieves the first synset for the keyword ”doctor”

Related Object Retrieval. Once the synset of a keyword has been determined, we can now
formulate queries for semantically related objects by matching the corresponding relationships of
WordNet.

Figure 5.11 shows three aspects of a synset. Additional information of lexical sense is provided
by a description (gloss) and by a sentence in which the term is used (sample). The synset member
relationship links to all nouns (the synonyms) that are grouped in the synset. The figure also
shows three more synsets connected with a hypernym relationship to the doctor’s synset.

In Listing 5.3 we provide the query that matches all the hyponyms of the synset 110040615-n
(the doctor/physician synset). It can of course be combined with the previous query to directly
retrieve all the hyponyms of a particular keyword. Lines 9-11 show part of the result.

125

éêë

éìíîïðñì

Literal
òòóóôóõòö-n

÷øù úûüýþûty

a ÿl�ensed mþ�l��ÿ

ýû��pltioner

wüû��þp-ontology:

gloss

wüû��þp-ü�püÿüo����ýü��mwüû��þp-ontology:

s�mýÿþ

I �þÿp sü ��� I wþ�p

to see my �ü�püû òó18ó	7ô7-n

òòóõöò17ô-n

òòóõ18õ6ò-n

wüû��þp-ü�püÿüo����ýü��m

dîñ
îð-n ��í�ñ�an-n êðD-n

wüû��þp- ontology: s��sþp�mþm�þû

(allergist)

(mþ�l��ÿ

sýþ�l�ÿlst)

(surgeon)

Figure 5.11: Synset members and hyponym relations in WordNet RDF

1 PREFIX lemon : <http :// lemon−model . net / lemon#>
2 PREFIX wordnet : <http :// wordnet−r d f . p r in ce ton . edu/wn31/>
3 PREFIX wordnet−ontology : <http :// wordnet−r d f . p r in ce ton . edu/ ontology#>
4

5 s e l e c t ?hyponym where {
6 wordnet :110040615− n wordnet−ontology : hyponym ?hyponym
7 }
8 −−
9 http :// wordnet−r d f . p r in ce ton . edu/wn31/109803747−n

10 http :// wordnet−r d f . p r in ce ton . edu/wn31/110651974−n
11 http :// wordnet−r d f . p r in ce ton . edu/wn31/110698621−n
12 . . .

Listing 5.3: WordNet SPARQL query that retrieves all hyponyms of the doctor/physician synset

Term Retrieval. Determining the written representation for a synset can lead to several terms
due to the synonym grouping in WordNet. Figure 5.12 shows the details of the surgeon’s synset
(110698621-n). Three lexical entries are members of the synset: surgeon, operating surgeon,
sawbones. They all have a canonical form with a written representation (for space reasons we only
show two of them in the picture).

R��

R�������

Literal

��� ������ty

 !"#$"% -n

&��'*�+-

ontology:

,-*,�+./�/0��

�2��345ng

surgeon-n

�39:�;��-n

surgeon-na �<-,=>=a* &<�

,��>=a?=z�, =* ,@�A�ry

&��'*�+-

ontology:gloss

surgeon-;n

C3;�;5�3B���Elemon:

>a*�*=>a?���/

FsurgeonFG�;H

lemon:

&�=++�*���

�2��345ng

surgeon-;n

C3;�;5�3B���E
F�2��345ng

surgeonFG�;H
lemon:

&�=++�*���

Figure 5.12: Canonical forms and their written representations of multiple synset members in
WordNet RDF

Listing 5.4 extends the previous query. It also first retrieves the hyponyms of the doctor/-
physician synset (line 6) and then follows all links to the synset members (line 7), their canonical
forms (line 8), and the written representations (line 9). Lines 12-17 show part of the result (28
terms in total). No further filtering is required.

126

1 PREFIX lemon : <http :// lemon−model . net / lemon#>
2 PREFIX wordnet : <http :// wordnet−r d f . p r in ce ton . edu/wn31/>
3 PREFIX wordnet−ontology : <http :// wordnet−r d f . p r in ce ton . edu/ ontology#>
4

5 s e l e c t ? term where {
6 wordnet :110040615− n wordnet−ontology : hyponym ?hyponym .
7 ?hyponym wordnet−ontology : synset member ?noun .
8 ?noun lemon : canonicalForm ? form .
9 ? form lemon : writtenRep ?term .

10 }
11 −−
12 r e s i d en t
13 surgeon
14 i n t e rn
15 a l l e r g i s t
16 operat ing surgeon
17 sawbones
18 . . .

Listing 5.4: WordNet SPARQL query that retrieves the complete set of terms for all hyponyms of
the doctor/physician synset

WordNet Relationship Mapping. In the previous paragraphs, we demonstrated how to re-
trieve narrower terms from WordNet RDF for noun keywords using a series of SPARQL queries.
Because queries for other semantic relationships are implemented in a similar way, we present the
mapping of all knowledge-base-independent queries (see Section 3.6) to the respective WordNet
relationships in Table 5.1. Note that although WordNet contains many verbs, it neither provides
noun-verb nor verb-noun relationships.

No. Query Name WordNet Relation

(1) Get Broader Nouns wordnet-ontology:hypernym

(2) Get Narrower Nouns wordnet-ontology:hyponym

(3) Get Part Nouns wordnet-ontology:member meronym
wordnet-ontology:part meronym
wordnet-ontology:substance meronym

(4) Get Whole Nouns wordnet-ontology:member holonym
wordnet-ontology:part holonym
wordnet-ontology:substance holonym

(5) Get Related Nouns All wordnet-ontology relationships

(6) Get Related Verbs not supported by WordNet

Table 5.1: Mapping of knowledge base independent queries to WordNet-specific relationships

5.6.3 OpenCyc Specific Queries

In Section 5.4.1 we described the data model of OpenCyc and gave an example of how terminology
is represented and linked in the knowledge base. The OWL version of OpenCyc contains OWL
classes that represent real world concepts. The classes have labels and aliases and they are linked
with certain semantic relationships.

127

Keyword Search and Target Object Retrieval. OpenCyc does not model a separate vocab-
ulary. Therefore, keyword search and target object retrieval are performed in one step. Figure 5.13
shows the concept Medical Doctor and all its labels and part of the description. In OpenCyc, a
concept always has exactly one RDF label and references zero or more alias labels with a property
called prettyString. The illustration shows the human-readable version of OpenCyc OWL. That
is, the concept has an English name and refers to its identifier via an additional link.

Doctor_

Medical

OJK

LMNPP

Literal

QSTUVW XYZ[UYty

\]^`]b

VcV:
[YUWWy
String

\]^`]bs

efgPh^han

MDYrijkqtSUq

efgPh^hans

MDs

VcV:
[YUWWy
String

[…] Each instance of Doctor_Medical

is a person with a certain type of

education in the field of medicine

(usually such a person has obtained

an MD degree) who is professionally

licensed to practice medicine.

rdfs:comment

Mx4rvVjrVZwpEbGdrcN5Y29ycA

cycAnnot:externalID

Figure 5.13: Labels and aliases in OpenCyc

Cycorp, Inc. has never directly supported SPARQL queries on OpenCyc, but OpenCyc’s OWL
data dumps can easily be loaded into a triple store. Consequently, we use the SPARQL syntax for
knowledge base queries as we did for WordNet. Unfortunately, the OpenCyc web interface was
discontinued in early 2017. Therefore, it is no longer possible to search OpenCyc using the HTML
pages rendered from the knowledge base. Listing 5.5 shows how to identify all concepts that are
OWL classes and labeled ”doctor”. The query searches RDF labels and OpenCyc prettyString
labels. Line 13 shows the result of the query.

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX cyc : <http :// sw . opencyc . org / concept/>
5

6 s e l e c t ? concept where {
7 {? concept r d f s : l a b e l ” doctor ”}
8 UNION
9 {? concept cyc : p r e t t yS t r i n g ” doctor ”}

10 ? concept rd f : type owl : Class .
11 }
12 −−
13 http :// sw . opencyc . org / concept /Doctor Medical

Listing 5.5: OpenCyc query that retrieves concepts from OpenCyc that have the label ”doctor”

Related Object Retrieval. To satisfy our knowledge base independent queries, we use Open-
Cyc’s taxonomic relationships and instance relationships to second-order collections. OpenCyc
does not support part-whole relationships or data related to verbs.

Figure 5.14 presents examples of more specific concepts of the Doctor Medical concept. On the
left, direct sub-concepts are shown using the RDF(S) subclass relationship. Listing 5.6 shows the
appropriate query to retrieve these concepts. It extends the previous query at line 8 and returns
sub-concepts. In order to determine super-concepts of a particular concept, only the subject and
the object of line 8 need to be switched.

128

uvxy{|{}

~v��y{|{}

��v��{}��|

���

Class

Literal

Object Property

Attending

Physician

Allergist
Doctor�

Medical

rdfs:subClassOf

Medical

SpecialistTyperdf:type

SecondOrder

Collection

rdf:type

Surgical

Oncologist
Dentist

rdfs:subClassOf

rdf:type

Figure 5.14: Taxonomic relations and references to second order collections in OpenCyc

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4

5 s e l e c t ? subconcept where {
6 ? concept r d f s : l a b e l ” doctor ” .
7 ? concept rd f : type owl : Class .
8 ? subconcept r d f s : subClassOf ? concept .
9 }

10 −−
11 http :// sw . opencyc . org / concept /Attend ingPhys ic ian
12 http :// sw . opencyc . org / concept / A l l e r g i s t
13 http :// sw . opencyc . org / concept / Neona t a lPe r i n a t a l Sp e c i a l i s t
14 . . .

Listing 5.6: OpenCyc query that retrieves sub-concepts of concepts from OpenCyc that have the
label ”doctor”

The second aspect shown in Figure 5.14 is that Doctor Medical is also an instance of Med-
icalSpecialistType. Other instances of this second order collection are shown in the picture on
the right. Members of a second order collection are of the same kind and are therefore related
terms. Listing 5.7 shows a query to find related concepts of the Doctor Medical concept. It first
follows all type associations (line 7) and filters them for second order collections (line 8). The
second filter (line 9) excludes second order collections that are topics. Then all instances of the
collection are retrieved (line 10). In some cases, the result of such a query overlaps with the result
of the sub-concept query (e.g., the allergist is a more specific medical doctor, but also a medical
specialist).

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX cyc : <http :// sw . opencyc . org / concept/>
5

6 s e l e c t ? r e l a t ed con c ep t where {
7 cyc : Doctor Medical r d f : type ? s e c o r d c o l l .
8 ? s e c o r d c o l l r d f : type cyc : SecondOrderCol lect ion .
9 ? s e c o r d c o l l r d f : type cyc : Facet ingCol l ec t i onType .

10 ? r e l a t ed con c ep t rd f : type ? s e c o r d c o l l .
11 }
12 −−
13 http :// sw . opencyc . org / concept / Add i c t i onMed i c i n eSpe c i a l i s t
14 http :// sw . opencyc . org / concept / Su rg i c a lOnco l og i s t
15 http :// sw . opencyc . org / concept /Dent ist
16 . . .

Listing 5.7: OpenCyc query that retrieves related concepts of the Doctor Medical concept

129

Term Retrieval. Having identified more general, more specific, or related concepts, we retrieve
the terms associated with each concept. Listing 5.8 shows an example of retrieving all labels of
the concept AddictionMedicineSpecialist.

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX cyc : <http :// sw . opencyc . org / concept/>
5

6 s e l e c t ? terms where {
7 { cyc : Add i c t i onMed i c i n eSpe c i a l i s t r d f s : l a b e l ? terms .}
8 UNION
9 { cyc : Add i c t i onMed i c i n eSpe c i a l i s t cyc : p r e t t yS t r i n g ? terms .}

10 }
11 −−
12 add ic t i on medicine s p e c i a l i s t
13 add ic t i on medicine s p e c i a l i s t s
14 add i c t i o n i s t
15 a dd i c t i o n i s t s

Listing 5.8: OpenCyc query that retrieves all terms of a concept

Filtering. OpenCyc contains a variety of concepts that are built with existing concepts and
functions (for example, a collection intersection function). These concepts cannot be used for
proper terminology retrieval. We filter the results that are annotated with a function name.
Listing 5.9 shows the extension of query 5.6, excluding concepts that contain ”Fn”.

1 . . .
2 ? subconcept r d f s : subClassOf ? concept .
3 ? subconcept <http :// sw . cyc . com/CycAnnotations v1#labe l> ? annot .
4 FILTER regex (? annot , ” ˆ ((? !Fn) .) ∗$ ”)
5 . . .

Listing 5.9: Query extension to filter OpenCyc functions

The result of the query in Listing 5.8 is just one example of how OpenCyc contains many
synonymous labels, which are variations in capital letters or plural forms of the main term. These
are filtered in the mapper component of the OntoConnector.

OpenCyc Relationship Mapping. Table 5.2 summarizes the mapping of all knowledge base
independent queries (see Section 3.6) to the relationships used in OpenCyc. Only taxonomic
relationships and related terms are supported by OpenCyc.

No. Query Name OpenCyc Relation

(1) Get Broader Nouns rdfs:subClassOf inverse

(2) Get Narrower Nouns rdfs:subClassOf

(3) Get Part Nouns not supported by OpenCyc

(4) Get Whole Nouns not supported by OpenCyc

(5) Get Related Nouns rdf:type of second-order collections

(6) Get Related Verbs not supported by OpenCyc

Table 5.2: Mapping of knowledge base independent queries to OpenCyc-specific relationships

130

5.6.4 ConceptNet Specific Queries

In Section 5.4.3 we described the data model of ConceptNet and gave a small example of how
terminology is represented and linked in the knowledge base. Concepts are labeled nodes in a graph
and are linked with labeled edges. Because of the simple data model we can perform keyword
search, target object retrieval and related object retrieval in one step. Figure 5.15 shows examples
of taxonomic relations in ConceptNet.

������doctor

������dentist

���IsA

- "dataset":

����conceptnet������

������surgeon

Node

Edge

Edge

Properties

���IsA

������clinical_

pharmacologist

- "dataset":

����umbel"

������medical_

school_graduate

���IsA

������human ���IsA

Figure 5.15: Taxonomic relationships in ConceptNet

Keyword Search, Target Object Retrieval and Related Object Retrieval. There are
three methods to acquire information from ConceptNet that we use for our modeling suggestions.
(1) Concept lookup: If you know the URI of a concept you can retrieve all the edges that are
connected to the concept. (2) Concept queries: The search allows to query for start nodes, end
nodes, and specific relationships, as well as most of the values of edge properties. (3) Related
concepts: ConceptNet offers a feature to retrieve a ranked list of similar concepts for an input
concept.

Listing 5.10 shows a lookup query for the concept doctor in the English language. The API
URL is followed by the concept identifier and optional offset and limit. From the result we took
one edge in which the doctor concept occurs (the list of sources was removed for space reasons).
The edge describes the /r/IsA relationship (line 22) between the start concept /c/en/surgeon
(line 28) and the end concept /c/en/doctor (line 14). Concept lookup can be used to test the
existence of a concept.

1 http :// ap i . conceptnet . i o /c/en/ doctor ? o f f s e t=0&l im i t =200
2 −−
3 {
4 ”@context ” : [
5 ”http :// ap i . conceptnet . i o / ld / conceptnet5 .6/ context . ld . j son ”
6] ,
7 ”@id ” : ”/ c/en/ doctor ” ,
8 ” edges ” : [
9 {

10 ”@id ” : ”/a / [/ r / IsA / ,/ c/en/ surgeon / ,/ c/en/ doctor /] ” ,
11 ”@type ” : ”Edge ” ,
12 ” datase t ” : ”/d/ conceptnet /4/ en ” ,
13 ”end ” : {
14 ”@id ” : ”/ c/en/ doctor ” ,
15 ”@type ” : ”Node” ,
16 ” l a b e l ” : ”a doctor ” ,
17 ” language ” : ”en ” ,
18 ”term ” : ”/ c/en/ doctor ”
19 } ,
20 ” l i c e n s e ” : ” cc : by /4 .0” ,
21 ” r e l ” : {

131

22 ”@id ” : ”/ r / IsA ” ,
23 ”@type ” : ” Re la t ion ” ,
24 ” l a b e l ” : ” IsA”
25 } ,
26 ” source s ” : [. . .] ,
27 ” s t a r t ” : {
28 ”@id ” : ”/ c/en/ surgeon ” ,
29 ”@type ” : ”Node” ,
30 ” l a b e l ” : ”a surgeon ” ,
31 ” language ” : ”en ” ,
32 ”term ” : ”/ c/en/ surgeon ”
33 } ,
34 ” sur faceText ” : ” [[a surgeon]] i s [[a doctor]] ” ,
35 ”weight ” : 4.47213595499958
36 } ,
37 . . .

Listing 5.10: ConceptNet web API lookup to retrieve all edges for the concept /c/en/doctor

In order to implement our knowledge base independent queries it is required to query for
specific relationships that are connected to the respective concepts. Listing 5.11 shows a concept
query for all IsA relationships that are starting from the /c/en/doctor concept. The resulting
target nodes are broader concepts of the doctor concept.

1 http :// ap i . conceptnet . i o /query ? s t a r t=/c/en/ doctor&r e l=/r /IsA&o f f s e t=0&l im i t
=100

2 −−
3 {
4 ”@context ” : [
5 ”http :// ap i . conceptnet . i o / ld / conceptnet5 .6/ context . ld . j son ”
6] ,
7 ”@id ” : ”/ query ? r e l=/r /IsA&s t a r t=/c/en/ doctor ” ,
8 ” edges ” : [{
9 ” r e l ” : { ”@id ” : ”/ r / IsA ” , . . . } ,

10 ”end ” : { ”@id ” : ”/ c/en/man of sc i ence ” , . . . } ,
11 ” s t a r t ” : { ”@id ” : ”/ c/en/ doctor ” , . . . } ,
12 ” sur faceText ” : ” [[A doctor]] i s [[a man o f s c i en c e]] ” ,
13 ”weight ” : 2 .0
14 . . .
15 } , {
16 ” r e l ” : { ”@id ” : ”/ r / IsA ” , . . . } ,
17 ”end ” : { ”@id ” : ”/ c/en/ med i c a l p r a c t i t i o n e r /n” , . . . } ,
18 ” s t a r t ” : { ”@id ” : ”/ c/en/ doctor ” , . . . } ,
19 ” sur faceText ” : ” [[doctor]] i s a type o f [[medical p r a c t i t i o n e r]] ” ,
20 ”weight ” : 2 .0
21 . . .
22 } ,
23 . . .

Listing 5.11: ConceptNet web API query to determine all IsA edges in which the concept
/c/en/doctor is the start node

ConceptNet includes a relatedTo relationship that explicitly connects concepts that are related.
Consequently, related terms can be queried as shown in the previous query. Recently, ConceptNet
started to offer another feature for retrieving related terms. This is made possible with ConceptNet
Numberbatch12, a dataset of pre-computed multilingual word embeddings created from Concept-
Net, word2vec, GloVe, and OpenSubtitles. The API was extended to query similar concepts for a
single concept and to determine relatedness between two concepts.

12https://github.com/commonsense/conceptnet-numberbatch

132

https://github.com/commonsense/conceptnet-numberbatch

Listing 5.12 shows an example to retrieve the most related concepts of doctor. Each of the
result entries includes the respective concept identifier accompanied with a measurement of how
similar the concepts are.

1 http :// ap i . conceptnet . i o / r e l a t ed /c/en/ doctor ? f i l t e r =/c/en
2 −−
3 {
4 ”@id ” : ”/ c/en/ doctor ” ,
5 ” r e l a t ed ” : [
6 {”@id ” : ”/ c/en/ doctor ” , ”weight ” : 1 .0 } ,
7 {”@id ” : ”/ c/en/ phys i c i an ” ,” weight ” : 0 .877} ,
8 {”@id ” : ”/ c/en/ a t t end in g phy s i c i an ” ,” weight ” : 0 .849} ,
9 {”@id ” : ”/ c/en/dpt ” ,” weight ” : 0 .845} ,

10 {”@id ” : ”/ c/en/ doctor s ” ,” weight ” : 0 .783} ,
11 {”@id ” : ”/ c/en/ ca rd i o t h o r a c i c su r g eon ” ,” weight ” : 0 .746} ,
12 {”@id ” : ”/ c/en/ phy s i c i an s ” ,” weight ” : 0 .707} ,
13 {”@id ” : ”/ c/en/medico ” ,” weight ” : 0 .7} ,
14 . . .

Listing 5.12: ConceptNet web API query to determine related concepts of /c/en/doctor filtered
by English language

Term Retrieval. All previously shown JSON result sets have in common that the terms of
linked nodes are specified using properties of the start and end nodes. In order to return sets of
terms two steps are performed: (1) The JSON result is parsed for the respective start or end nodes.
(2) The property term is extracted, concept and language prefixes are removed, and underscore
characters are replaced with spaces.

Filtering. The concept search function of ConceptNet is not restrictive enough to only return
edges that exactly match the specified URI. In some cases the result also contains concepts having
longer names that start with the keyword or are followed by word variations. These will be
removed from the result set. We also filter edges that have a weight of zero or a negative weight
(indicating the statement is not true).

ConceptNet Relationship Mapping. Table 5.3 summarizes the mapping of all knowledge
base independent queries (see Section 3.6) to the relationships used in OpenCyc. Only taxonomic
relationships and related terms are supported by OpenCyc.

No. Query Name ConceptNet Relation

(1) Get Broader Nouns /r/IsA + start node

(2) Get Narrower Nouns /r/IsA + end node

(3) Get Part Nouns /r/PartOf + end node
/r/HasA + start node

(4) Get Whole Nouns /r/PartOf + start node
/r/HasA + end node

(5) Get Related Nouns /r/RelatedTo + start node
/r/SimilarTo + start node
Numberbatch related query

(6) Get Related Verbs not supported by ConceptNet

Table 5.3: Mapping of knowledge base independent queries to ConceptNet-specific relationships

133

5.7 Query Result Integration

In our mediator-wrapper architecture (see Figure 5.7 on page 122) each knowledge base is queried
separately. The wrapper of each connected knowledge base delivers a list of terms to the mapper
component depending on the query. The integration is performed straightforward in three steps.
(1) Normalization: We lowercase all terms except for words that only contain uppercase letters
(usually acronyms). Plural nouns are reduced to their singular form. Adjectives in multiword ex-
pressions are reduced to their normal form. Normalization is implemented using the morphology
component of the Stanford CoreNLP toolkit13. (2) Approximate String Matching: In order
to reduce further word variants (e.g., American and British English spelling differences) we apply
fuzzy string search on the resulting list of terms. It is implemented using the Java implementation
of FuzzyWuzzy14. (3) Duplicate Detection: In the final list of terms duplicates are eliminated,
but it is preserved how often a term occurred. The frequencies are an important indicator for sub-
sequent ranking. Terms found in many knowledge bases should receive more prominent positions
than terms that occurred only once.

5.8 Templates for Knowledge Base Integration

Based on the exemplary integration of WordNet, OpenCyc and ConceptNet, we now derive generic
templates in this section that allow us to integrate a variety of knowledge bases that use the same
data models. The respective templates are already implemented in the OntoConnector component,
thus the integration of further knowledge bases using the respective data models is possible without
any effort.

5.8.1 Lemon-Based Lexical Resources

The first template (cf., Listing 5.13) is designed to retrieve related terms from knowledge bases
that use the Lexicon Model for Ontology (lemon) for their terminology. It searches for keywords
in the written representations of the canonical forms of all lexical entries (line 5-7). One or more
possible senses reference the concept of the target knowledge base (lines 7-8). The concept is
connected to a related concept using a specific relationship of the target knowledge base that must
be inserted in line 9. Finally, lines 10-13 follow the properties to the lexical sense, lexical entry
and retrieve related terms.

1 PREFIX lemon : <http :// lemon−model . net / lemon#>
2 PREFIX tkb : <http :// namespace . targetknowledgebase . org /ns#>
3

4 s e l e c t DISTINCT ? relatedTerm where {
5 ? form lemon : writtenRep ”<<<keyword>>>”.
6 ? entry lemon : canonicalForm ? form .
7 ? entry lemon : sen se ? sen se .
8 ? sen se lemon : r e f e r e n c e ? ontologyConcept .
9 ? ontologyConcept <<<tkb : relat ionshipName>>> ? re latedConcept .

10 ? re latedConcept lemon : i sRe fe r enceOf ? r e l a t edS en s e
11 ? r e l a t edS en s e lemon : sen se ? re la t edEnt ry
12 ? re la t edEnt ry lemon : canonicalForm ? re la t ed form .
13 ? re la t ed form lemon : writtenRep ? relatedTerm .
14 }

Listing 5.13: Template for a SPARQL query to retrieve related terms for a given keyword from a
lemon-based knowledge base

13https://stanfordnlp.github.io/CoreNLP/
14https://github.com/xdrop/fuzzywuzzy

134

https://stanfordnlp.github.io/CoreNLP/
https://github.com/xdrop/fuzzywuzzy

Currently, we are aware of the following resources that have been converted using the lemon-
model for integration into the Linguistic Linked Open Data Cloud:

• WordNet RDF [299] – the lexical database for English

• BabelNet 2.0 [348] – a multilingual encyclopedic dictionary

• DBnary [349] – Wiktionary as a multilingual lexical resource in RDF

• UBY [350] – a linked lexical resource for English and German

5.8.2 OWL Ontology Schemata

The second template developed integrates OWL encoded ontology schemata. Normally, the pre-
dominant content of OWL schemata is taxonomic knowledge, thus the relationship name in line 9
of Listing 5.14 will be replaced by rdf:subclassOf for narrower terms and subject/object will
be switched for broader terms retrieval. Anyway, if the knowledge base encodes other forms of
knowledge that can be used for domain modeling (e.g., part-of relationships), these user-defined
properties can be used in line 9 instead. In the template, resulting terms are filtered for the
English language (line 11) as many knowledge bases provide labels in multiple languages.

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX tkb : <http :// namespace . targetknowledgebase . org /ns#>
5

6 s e l e c t DISTINCT ? relatedTerm where {
7 ? concept r d f s : l a b e l ”<<<keyword>>>”@en .
8 ? concept rd f : type owl : Class .
9 ? r e l a t ed con c ep t <<<tkb : relat ionshipName>>> ? concept .

10 ? r e l a t ed con c ep t r d f s : l a b e l ? relatedTerm .
11 FILTER (lang (? relatedTerm) = ”en ”)
12 }

Listing 5.14: Template for a SPARQL query to retrieve related terms for a given keyword from
OWL-based ontologies

There is a huge amount of OWL schemata and vocabularies that cannot be listed here in detail.
The Linked Open Vocabularies (LOV) dataset15 provides a good entry point to search for terms
and domains and retrieve further information on published vocabularies.

5.8.3 SKOS Vocabularies

For reasons of space, we have not demonstrated the exemplary integration of vocabularies based
on the Simple Knowledge Organization System (SKOS)16 in Section 5.4. However, these types of
knowledge sources are easy to integrate. Therefore, we provide a template for their integration
(see Listing 5.15).

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>
4

5 s e l e c t DISTINCT ? relatedTerm where {
6 ? concept skos : p re fLabe l ”<<<keyword>>>”@en .
7 ? concept rd f : type skos : Concept .
8 ? concept <<<skos r e l a t i on sh ip >>> ? re latedConcept .

15https://lov.linkeddata.es/dataset/lov/
16https://www.w3.org/2004/02/skos/

135

https://lov.linkeddata.es/dataset/lov/
https://www.w3.org/2004/02/skos/

9 {? re latedConcept skos : p re fLabe l ? relatedTerm .}
10 UNION
11 {? re latedConcept skos : a l tLabe l ? relatedTerm .}
12 FILTER (lang (? relatedTerm) = ”en ”)
13 }

Listing 5.15: Template for a SPARQL query to retrieve related terms for a given keyword from a
SKOS-based vocabulary

As with OWL schemata, there are a variety of SKOS vocabularies and thesauri (e.g., EU-
ROVOC, LCSH, SNOMED, DBpedia categories, just to name a few important ones), which can-
not be detailed here. Suominen & Mader [351] provide a qualitative study with 24 vocabularies.
More vocabularies can also be found on the W3C SKOS website17.

5.8.4 JSON-LD APIs

Providing a generic template for proprietary JSON-LD RESTful APIs is a challenging task. API
calls are not standardized, and the returned format can vary a lot depending on the context
specification although semantically equivalent. In order to access these APIs in a similar way as
shown before, we use SPARQL-LD [352, 353], an extension of SPARQL 1.1 Federated Query that
allows to directly access and use linked data contained in arbitrary resources on the Web (e.g.,
embedded RDF, JSON-LD files, RDF files) in SPARQL queries. Listing 5.16 shows the respective
template that uses the SERVICE operator for the API call and matches triples according to the
relationships of the knowledge source.

1 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
2 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
3 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>
4 PREFIX tkb : <http :// namespace . targetknowledgebase . org /ns#>
5

6 s e l e c t DISTINCT ? relatedTerm where {
7 SERVICE <http :// ap i . c a l l . org /query /keyword> {
8 ? concept r d f s : l a b e l ”<<<keyword>>>”@en .
9 ? concept rd f : type <<<tkb : typeName>>>

10 ? r e l a t ed con c ep t <<<tkb : relat ionshipName>>> ? concept .
11 ? r e l a t ed con c ep t r d f s : l a b e l ? relatedTerm .
12 }
13 }

Listing 5.16: Template for a SPARQL-LD query to retrieve related terms from a JSON-LD-based
API call

5.9 Summary

In this chapter, we presented the detailed approach of how conceptual terms and their lexical
relationships are extracted from heterogeneous knowledge bases. We have analyzed a number of
knowledge bases that use different data models with respect to the organization of lexical and
conceptual content. We have implemented OntoConnector, a component that realizes a mediator-
based knowledge base querying approach to provide unified access to information about terms
and their relationships at the schema level, in proprietary intermediate data models, and at the
instance level. Query results are mapped to modeling language-specific concepts to generate model
element suggestions. From the exemplary integration of WordNet, OpenCyc, and ConceptNet, a
number of generic templates for integrating knowledge bases have been derived that allow the
simple integration of a variety of knowledge bases that expose either a lemon lexicon, an OWL
schema, a SKOS vocabulary, or a JSON-LD API.

17https://www.w3.org/2001/sw/wiki/SKOS/Datasets

136

https://www.w3.org/2001/sw/wiki/SKOS/Datasets

Chapter 6

DoMoRe: Implementation of the
Recommender System

The thesis has so far developed the methodological foundations for domain modeling support
and two methods for retrieving domain knowledge, namely SemNet, which provides access to
a large number of semantically related terms derived from text datasets, and OntoConnector,
which provides uniform access to structured lexical information and relationships from external
knowledge bases. There is a huge amount of information available, but a modeling expert will
have difficulty choosing information relevant to a project or domain model, even if suitable search
tools are available. This chapter elaborates on how to provide the user with specific pieces of
information and how to present the information to the user using automated recommendations.
The implemented system presented here combines the developed results of the previous chapters
under one roof and thus also addresses the first challenge of domain modeling: the high costs of
acquiring domain knowledge.

6.1 Introduction

In this chapter, we describe DoMoRe, a domain modeling recommender system that suggests
related model elements for domain models. It implements the developed semantic modeling sup-
port method of this thesis and integrates SemNet and OntoConnector to provide the user with
context-aware information during model development. The recommender system extends a popu-
lar modeling environment, the Eclipse Ecore Diagram Editor, part of the Eclipse Modeling Project.
We provide details on how the recommendations from SemNet and connected knowledge bases are
generated and show two features that present the suggestions to the user.

Section 6.2 reviews related approaches and systems with similar objectives. In Section 6.3
we describe the modeling tool and the environment, which are extended by our recommendation
system. Section 6.4 shows the architecture of the system. Section 6.5 describes how to derive
recommendations for the respective types of model elements from SemNet and the connected
knowledge bases. The implementation of the ranking strategy is given in Section 6.6. Details
about the Semantic Autocompletion and the Model Advisor feature are presented in Section 6.7.
The chapter is summarized in Section 6.8.

6.2 Related Recommender Systems

In this section we summarize the state of the art in modeling recommendation systems. We start
with repository-based approaches and works that focus on single aspects of recommendation, and
then compare our work with two recent recommendation systems.

137

6.2.1 Modeling Assistance Approaches

Modeling support systems provide additional information and functionality during the modeling
process to help model development. They typically focus on two areas: (1) creating model libraries
or similar content; and (2) developing assistance frameworks and functions using these libraries.
The largest known model repository of UML models and meta models is the Lindholmen UML
dataset [354]. It contains links to over 93,000 UML diagrams collected from GitHub repositories.
A similar effort, the Gothenburg UML Repository1 contains over 20,000 models crawled from the
Internet, images and GitHub (only a collection of nearly 1,000 models is publicly searchable). Not
surprisingly, most of the models are implementation models rather than domain models (for exam-
ple, the search for ”hospital” or ”doctor” yielded 7 models, while a search for ”interface” returned
90 models). Other important resources are ReMoDD [355], MOOGLE [356], the AtlanMod Meta-
model Zoos2 (containing a total of several hundred models). EMFStore3 and the Eclipse Model
Repository4 are tools for maintaining model repositories. There are works that propose certain
recommendation features : SmartEMF [233] uses reasoning in Prolog for consistency checking in
DSL development. Kuhn proposes a concept for recommending method names in source code and
UML models [357].

6.2.2 HERMES Recommender Project

The HERMES project addresses modeling support with a framework approach. It is a research
prototype supporting the reuse of software models [358]. Its main objective is to provide tool
support for creating model libraries [359] and creating recommenders that use the contents of
these model libraries during model development [360].

The framework consists of four components: (1) Harvest: This component helps to identify
reusable parts in existing models and stores them in a model library. (2) Evolve: This component
is responsible for model management within the model library to evaluate and improve models
according to quality guidelines. (3) Reuse: This component helps the developer to find suitable
models in model libraries through recommendations. (4) Store: This component is the back end of
the model library and stores models in a database and provides access to external model storage
(e.g., Git or directory-based access).

At first glance, the HERMES project appears to be very similar to DoMoRe, but a detailed
analysis shows the different strategies to achieve the modeling support. The main differences with
regard to this thesis are as follows:

HERMES focuses on the reuse of models. Consequently, the framework focuses on a paradigm
shift from copy & paste modeling [360] to model library recommendations. The assumption of
HERMES is that model libraries exist and are maintained. The project also provides methods to
manually create quality-assured model libraries [361]. In contrast, we have analyzed that existing
model libraries (e.g., ReMoDD [355], MOOGLE [356], or Eclipse Model Repository [362]) are by
no means sufficient to provide model recommendations for all types of domains. They contain only
a small number of models5. In addition, many of them are specific to software implementations
and cannot be used for domain modeling. The HERMES approach faces the chicken or egg
dilemma. Without a large number of existing models, the recommendations are very limited.
Without sophisticated recommendations, less support for creating domain models is achieved,
resulting in fewer contributions to a model library. A review of the publications related to the
HERMES project did not indicate the size of the model libraries that were collected or used for
recommendations. In contrast, our work primarily addresses the bottleneck of existing models.
We have built a large knowledge base for domain modeling ourselves, relying on preconfigured and

1http://models-db.com/
2http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos
3http://www.eclipse.org/emfstore/
4http://modelrepository.sourceforge.net
5For example, on April 25, 2019, ReMoDD (http://www.cs.colostate.edu/remodd/v1/) contained only 60 mod-

els. Only 6 of them were class diagrams and 3 of them Ecore models. The MOOGLE search engine (discontinued)
was based on approximately 150 EMF models.

138

http://models-db.com/
http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos
http://www.eclipse.org/emfstore/
http://modelrepository.sourceforge.net
http://www.cs.colostate.edu/remodd/v1/

extensible plug-in mechanisms for external knowledge sources, which contain many more elements
for recommendations than existing model libraries.

The HERMES project is a framework approach [363]. It focuses on architectural foundations
and provides programming skeletons to develop custom recommendations in a command-based
model editor [364]. Consequently, concrete recommendation algorithms, presentation of modeling
suggestions, connections to external model libraries must be implemented according to the needs
of someone who wants to develop a recommender and are not part of HERMES. Nonetheless,
there is documentation on how to implement a recommendation strategy based on WordWeb6

(parsing the free version of this particular dictionary website). In contrast, this thesis provides a
ready-to-use recommendation system that is able to provide modeling suggestions based on several
already-linked knowledge sources. It implements a holistic recommendation algorithm based on
statistical semantics to create model element suggestions in a uniform way.

6.2.3 EXTREMO Assistant

The EXTREMO Assistant [365] is an extensible tool for facilitating meta-model development.
The approach is based on repositories with a common data model that can be uniformly queried.
Repositories are created from heterogeneous file sources, supporting the EMF, OWL, and XSD
technological spaces [366].

The main components are: (1) A common data model for storing information about model
elements extracted from heterogeneous sources, (2) a persistence component that stores extracted
information in a repository, (3) a query service that uses fuzzy and synonym search using WordNet,
and (4) a user interface subsystem for search, repository exploration, and modeling tool interaction.

The assistant distinguishes itself from our DoMoRe recommendation system in the following
respects: (1) Like in the HERMES project, EXTREMO has the main objective to provide a mod-
eling assistance infrastructure. Its focus is on integrating multiple information sources into the
Eclipse infrastructure. There are ready-to-use visualizations and connectors, but the system inte-
grates only a few sample cases, such as: The Atlanmod Metamodel Zoo, some OMG specification
meta-models (e.g., BPMN, SBVR), and two sets of US government OWL files. As a result, the
effort to acquire knowledge is still high as appropriate sources of information must be discovered
and analyzed to be programmatically integrated into the system. (2) The authors chose a com-
mon repository approach (see Section 5.2.3 Data Centralization) that requires full processing of
each source of information as well as extraction and transformation of the relevant data into the
EXTREMO target data model. This is problematic for large sources that require a timely con-
version step. As the assistant only supports file-based sources, it cannot query online databases,
for example, RDF data using SPARQL. (3) The user must actively search for information he is
interested in or explore the repository. The query services help him to find related terms with
WordNet, but no automatic recommendations are made based on the current content of a model.

6.3 Eclipse Modeling Environment

The Eclipse Modeling Project (EMP)7 is a customized Eclipse distribution that provides a set of
(meta) modeling tools and frameworks for developing domain-specific languages, modeling tools,
and for model-driven software development. At the heart of EMP is the Eclipse Modeling Frame-
work (EMF) that contains the Ecore Meta-Meta Model for the development of meta-models and
domain models in general. EMF provides tools for developing meta-models, code-generation func-
tions for deriving suitable implementation classes in Java, and a generic model editor for testing
instances of meta-models. EMF is the starting point for the abstract syntax development of mod-
eling languages. In addition, EMP contains several other tools: concrete syntax design (xText
for textual modeling, Sirius and GMF for graphical notation), model-to-model transformations

6http://wordweb.info/
7https://www.eclipse.org/modeling/

139

http://wordweb.info/
https://www.eclipse.org/modeling/

(ATL, QVT, epsilon), model-to-text transformations (Acceleo, JET), and model storage and re-
trieval (CDO, Teneo).

Figure 6.1: Ecore Diagram Editor

When launching a domain modeling project with Eclipse, one usually comes first into contact
with the EcoreTools that include a graphical editor for EMF models, called Ecore Diagram Editor
(see Figure 6.1). It provides a graphical user interface similar to other UML tools for designing
classes, attributes, operations, data types, and references for Ecore models. On the left side of the
editor, a palette with the available meta-model elements is offered. In the middle is the diagram
area for creating, customizing and connecting model elements. In the lower area, properties of
the elements can be manipulated. On the right side, an overview of the model and additional
information are displayed.

The Ecore Diagram Editor, and also the complete Eclipse Modeling Framework is a set of
Eclipse plug-ins. The Eclipse platform architecture is based on a plug-in model. ”Plug-ins are
structured bundles of code and/or data that contribute functionality to the system. Functionality
can be contributed in the form of code libraries (Java classes with public API), platform extensions,
or even documentation. Plug-ins can define extension points, well-defined places where other plug-
ins can add functionality.”8.

The Eclipse Platform Architecture as shown in Figure 6.2 provides a flexible way to extend
existing plug-ins and to integrate new functionality. It is used to build the required components
that implement the semantic modeling support for a widely used domain modeling tool.

6.4 Architecture

The goal of implementing the recommender system is to extend the Ecore Diagram Editor and
Eclipse environment to access the content of a model being developed, to respond to user interac-
tions with the editor, to retrieve information from connected knowledge sources, and to recommend
model elements when modeling. To implement the proposed support features, several plug-in types

8https://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/arch.htm

140

https://help.eclipse.org/neon/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/arch.htm

Figure 6.2: Eclipse Platform Architecture (from Eclipse Neon Help, Chapter ”Platform Plug-in
Developer Guide”)

must be integrated into the Eclipse environment: The Eclipse environment has an event notifica-
tion system for all types of component interactions with the platform. A background plug-in with
two listener functions is attached to the platform core. It recognizes each time the diagram editor
is started and used. If so, a second listener is attached to the editor to receive notifications of the
user interactions. The contextual information display is implemented as an Eclipse view plug-in,
a view pane that can be attached to any part of the workspace. A second plug-in that contributes
to the user interface intercepts user input on model element names to suggest appropriate terms.
Back end functionalities are implemented as Eclipse core runtime plug-ins.

D
N

�
A

����

���������

Model

� ¡�����

¢�£¤�� �

Auto-

completion

Model

Advisor
¥���££��¦��

Eclipse Modeling

Environment §¨©ª¨«

Figure 6.3: Architecture of the DoMoRe recommender system

Figure 6.3 depicts the architecture of the DoMoRe recommender system. The Model Listener
observes changes in Ecore models that are developed with the Ecore diagram editor. Whenever
a change in a model is made, the current content of the model is retrieved together with the
newly added or changed model element and its relationships. The Recommender is notified and
coordinates all subsequent steps of modeling suggestions. First, the domain model is transformed
into a lexical-semantic representation using the domain-specific terms and semantic relationship
mappings (cf., Section 3.5, Table 3.1). Based on this representation the Semantic Network is
queried for related terms and directly delivers ranked lists of related terms to the recommender.

141

The Ontology Connector manages the set of connected knowledge bases and is queried as well. It
incorporates the mediator and mapper (cf., Section 5.5, Figure 5.7) and operates the translation
of the terminological queries to knowledge base specific queries and the integration of results. The
recommender controls two components with which the user interacts. The Model Advisor is a
view in the Eclipse environment that displays contextual information of the model elements. It
shows possible generalizations, specializations, aggregations, associations, and related elements.
The developer can use this view to easily add new content to a domain model by drag & drop of
suggested elements to the diagram. The appropriate relationships will be created automatically.
Semantic Autocompletion is triggered in case a new element in the model is named or the name
of an existing element is changed. This feature behaves like a search engine. A context-sensitive
pop-up list with names for the respective element is displayed, and the suggestions are filtered
while typing.

6.5 Recommendation Generation

In this section we provide insights into the automated generation of model element recommenda-
tions by means of examples. We first show in Section 6.5.1 the noun term recommendation for class
names that is applicable for our modeling support scenario 1 (except for associated class informa-
tion), and scenarios 3 to 8 (cf., Section 3.4). These types of recommendations are mainly based on
the binary relationships contained in SemNet and connected knowledge bases. The second type of
recommendations is demonstrated in Section 6.5.2, the suggestion of verbs for association names,
which is applicable for modeling support scenario 1 (only associated class information), scenario 2,
and scenario 9. These types of recommendations are mainly based on the ternary relationships
and binary noun-verb relationships contained in SemNet.

6.5.1 Class Name Recommendation

As an example for noun term recommendation we demonstrate the knowledge retrieval and rec-
ommendation generation for Scenario 3: A new, unconnected class is created, and names for that
class are suggested. Figure 6.4a shows a small domain model example containing two classes
connected with a named association. After creating the new class the model listener triggers the
recommender, and the lexical representation of the domain model is generated (cf., Figure 6.4b).
The information need depends on the model refinement step. In this case, noun terms are required
that are semantically related to both Hospital and Doctor (cf., Figure 6.4c).

Figure 6.4: Lexical preparation in the procedure of the recommendation generation

In the following, the information need is broken down into separate lexical queries for each term
and relationship type (see Figure 6.5d). The main reason for separately retrieving the information
is that there is virtually no conceptual knowledge base that contains n-ary relationships. In
contrast, our semantic network directly supports ternary relationships that allow more accurate
results for term pairs, but for more than two terms, separate queries must be executed in each
case. In the next step, the semantic network is queried for each term (cf., Figure 6.5e) and every
connected knowledge base is queried for each term (cf., Figure 6.5f).

142

Figure 6.5: Retrieval in the procedure of the recommendation generation

Previously, separate lists of related terms were determined for each term of the original domain
model, for each relationship type and for each knowledge source9. First, results from the knowledge
bases are integrated based on the following principle. Per term the distinct union of all intermediate
results (e.g., related terms of ”doctor” from WordNet, BabelNet, ConceptNet, etc.) is created,
and it is recorded how often each term had occurred. The resulting lists have a preliminary order,
with terms with higher frequencies appearing first (cf., Figure 6.6g).

Figure 6.6: Integration and ranking in the procedure of the recommendation generation

In the final step, the presorted knowledge base results are integrated into the semantic network
results. First, the knowledge base result and the respective semantic network result for each term
are joined using the importance weight. It assures that terms found in many knowledge bases
receive more prominent positions in the final ranking. Secondly, one final list of recommended
terms is created. Separate results are intersected and relative frequencies of common terms are
multiplied. The final list is divided into n segments: Terms that are related to n query terms appear
first. After that, terms follow that are related to n−1 query terms, and so forth. Finally, a sorting
by relevance is achieved by applying the pointwise mutal information score (cf., Figure 6.6h). This
measurement is explained in Section 6.6.

9For example, if three classes exist in the model and broader and narrower relationships have to be retrieved
from five knowledge sources, 30 intermediate result lists are generated.

143

Class Name Suggestions for Other Relationship Types. Besides the recommendation of
related classes, as shown in the example, the recommender system suggests classes connected with
specific relationship types (e.g., subclasses, aggregations) according to scenario 1 and scenarios 3
to 8. The procedure of recommendation generation is similar to the steps described above, but for
this purpose primarily connected knowledge bases are queried and SemNet is mainly responsible
for complementing and ranking the recommendations.

6.5.2 Association Name Recommendation

This section demonstrates the recommendation of verbs for association names, particularly the
generation of suggestions for modeling support scenario 9: A new association is created between
two classes. Figure 6.7a shows the respective example domain model, which contains two classes
connected with a recently drawn association that is going to be named. The lexical representa-
tion of the model just contains two noun terms and an unnamed agent-action relationship (cf.,
Figure 6.7b). In this case, the information need is a verb representing the connection between the
two nouns Hospital and Patient (cf., Figure 6.7c).

Figure 6.7: Lexical preparation for verb term recommendations

Decomposition of the information need is not required because a verb connecting two noun
terms is a ternary relationship that can be directly retrieved from SemNet. The query that
retrieves related verb terms for both Hospital and Patient (cf., Figure 6.8d) is executed and the
lexical ranking with PMI is applied. The resulting list of verbs is directly used for autocompletion
of the association name (cf., Figure 6.8e).

Figure 6.8: Retrieval and ranking for verb term recommendations

144

Further Uses of Verb Suggestions. Besides the recommendation of associations between two
classes as shown above, SemNet provides data for modeling support scenario 1 (associated class
information) and scenario 2 (context information for a selected association) using the binary and
ternary noun-verb relationships. This allows to generate recommendations of associations plus the
connected class by querying only one noun term.

6.6 Ranking Implementation

It is likely that queries to our semantic network and the connected knowledge bases deliver nu-
merous related terms (up to a few thousand for each query). The ranking implemented in the
recommender component is responsible for presenting the most relevant model elements first.
Hence, if a list of related terms is retrieved, they will be ordered and the most important terms
appear at the top. This is achieved by combining different relatedness measures.

From the construction of the semantic network we know absolute frequencies of co-occurring
terms (cf., Section 4.3.8.2). For each term in the network we compute relative frequencies with
respect to each connected related term. This normalization allows to compare the relatedness
among different terms. Both measures allow a basic ranking of terms, but they have a shortcoming:
Very general terms (e.g., time, man, year) that appear in almost all contexts are likely to be ranked
on prominent positions.

To overcome this disadvantage we implement an information theoretic measurement: Point-
wise Mutual Information (PMI) and its normalized form (cf., Equations 6.1). It measures the
dependency between the probability of coinciding events and the probability of individual events
(first introduced into lexicography by Church and Hanks [325]).

pmi(x, y) = log

[

p(x, y)

p(x)p(y)

]

npmi(x, y) =
pmi(x, y)

− log [p(x, y)]
(6.1)

Applying PMI to co-occurring terms means that x and y are terms, and PMI relates the prob-
ability of their coincidence p(x, y) with the probabilities of observing both terms independently
p(x)p(y). PMI is an associativity score of two terms taking into account their individual corpus
frequency, thus, very frequent and general terms receive lower scores. Unfortunately, this mea-
surement also has a shortcoming: Although very general terms are ranked lower, very rare terms
that co-occur only very few times with other terms tend to receive high scores.

Finally, in order to achieve a balanced ranking our recommender system uses the lexicographer’s
mutual information (LMI), which is the NPMI score multiplied with the absolute co-occurrence
frequency [367].

6.7 Eclipse Plug-ins

Two extensions to the Eclipse Ecore Diagram Editor have been implemented that allow the user to
interact with the recommender system. This section shows how context information is presented
to the user and how the model element name suggestions work in the user interface.

6.7.1 Model Advisor Plug-in

The Model Advisor is a view plug-in that displays contextual information about the currently
selected model element. When a model element is selected the recommender component queries
the semantic network and knowledge bases for just one term, but with multiple relationship types.
The information is aggregated and grouped into related elements, possible generalizations, spe-
cializations, aggregations, and associations (cf., Figure 6.9).

145

Figure 6.9: Model Advisor of the recommender system: suggestions for possible related classes,
superclasses, subclasses, and aggregations

6.7.2 Semantic Autocompletion Plug-in

The Semantic Autocompletion plug-in directly extends the behavior of how the name of a class or
association is typed. Whenever a name is edited, the user has the option to activate the feature
with a Ctrl-Space keystroke as it is done for code completion when programming in the Eclipse
environment. Generated lists of ranked terms are retrieved from SemNet depending on the current
content of the model and a context-sensitive pop-up list of related terms is shown. It behaves like
a search engine and is filtered while typing (cf., Figure 6.10).

146

Figure 6.10: Semantic Autocompletion of the recommender system: Context-sensitive name pre-
dictions and infix search

147

6.8 Summary

In this chapter, we described how our semantic modeling support was implemented in a widely
used modeling tool. The Eclipse Modeling Project and its EMF-based model editors have been
enhanced with our Domain Modeling Recommender System (DoMoRe). It combines OntoCon-
nector and SemNet under one roof to create context-aware modeling suggestions based on the
connected knowledge bases and our large semantic network of terms. Using detailed examples, we
showed how to automatically generate recommendations for class names and association names
in domain models. Since the knowledge source queries typically return a large number of results,
a ranking strategy based on pointwise mutual information has been implemented to present the
most relevant model elements to the user, depending on the content of a model. Two features
have been developed that allow the user to interact with the recommender system: Semantic Au-
tocompletion enables search engine-like behavior when entering the names of model elements, and
the Model Advisor displays contextual information grouped by modeling relationships.

148

Chapter 7

Practical Applications of Semantic
Modeling Support

7.1 Introduction

This dissertation was conducted in the context of several research projects that were carried
out in close cooperation with industry. This made it possible to continuously test and apply
the developed methods and tools using real-world use cases from the projects. All projects had
important domain modeling tasks. In this chapter we summarize the respective research projects
that have taken place in different environments and domains, report on the results of the domain
modeling and the experiences in the development and use of SemNet, OntoConnector and the
DoMoRe recommendation system.

The ideas for this dissertation originally came from the BIZYCLE project [368] at TU Berlin,
a research cooperation between academia and industry, to develop model-driven methods for soft-
ware and data integration and their practical application in various industrial areas. The project
demonstrated the potential of applying semantic technologies for model-based methods [369] and
the need to further develop the link between information extraction and model-driven engineering.
The research leading to this dissertation was carried out at two research institutions, the Database
and Information Management Group (DIMA) of the TU Berlin, where the BIZWARE project (cf.,
Section 7.2) was conducted, and the Semantic Technologies Group at the Hasso Plattner Institute
for IT Systems Engineering in Potsdam, where the dwerft project (cf., Section 7.3) and the AdA
project (cf., Section 7.4) took place.

7.2 BIZWARE Research Project

Project Setting. BIZWARE [370] explored the potential of Domain-Specific Languages (DSLs)
and Model-Driven Engineering for small and medium-sized enterprises (SMEs) in a variety of
sectors, including healthcare, manufacturing / production, finance / insurance, publishing and
facility management. It was a three-year research collaboration (2010-2013) of two academic
partners with eight SMEs. The overall objective of the project was to develop a systematic and
standardized process for building DSL-based software, including deployment, run-time and life
cycle aspects, and operation of such domain software. Participatory modeling between software
professionals and domain experts was to be enabled through dedicated (graphical and textual)
languages in the specified domains. BIZWARE therefore focused on the development of domain-
specific languages (DSLs) for the respective domains and a DSL framework including meta-DSL
management, the so-called BIZWARE model and software factory.

149

Main Domain Modeling Results. While industry partners developed domain-specific lan-
guages in their respective domains, the academic partners developed methods, guidelines, and
tools to support DSL development. Figure 7.1 gives an overview of the domain-specific languages
and the model and software factory developed in the project. Originally, companies planned to use
DSLs in customer projects. However, the project found that the use of DSLs to modernize their
own software products and development infrastructures was more efficient. An important success
story of the project was the development and application of a configuration DSL in a company
offering software solutions for publishers. It allowed to generate large configuration artifacts in
SQL language based on a textual DSL that provides a user-friendly syntax and editor for devel-
opers. This significantly reduced the manual customization of the software product for customers
and made it easier to find inconsistencies. A second DSL, which has also become productive, was
a combination of graphical workflow modeling in facility management and code generation for
configuring software systems that have implemented these workflows.

Figure 7.1: Overview of the BIZWARE model and software factory and implemented domain-
specific languages

Progress of the Thesis Contributions. During the time at TU Berlin the concept of the
dissertation and methodology of the Semantic Modeling Support was developed [371]. The first
version of SemNet was created that was capable of relating noun terms consisting of up to three
words (2.7 million terms and 37.5 million binary relationships) [372]. Based on SemNet a proto-
type of the semantic autocompletion feature was implemented and demonstrated in a healthcare
use case with suggestions of single noun terms using probabilistic relationships [373]. Recommen-
dations of model elements using specific relationships were based on a manual knowledge base
integration [374].

Lessons Learned. Actors of the project were software developers from the respective companies
on the one hand, who worked on the introduction of DSL-based workflows to improve their devel-
opment tasks. On the other hand, modeling experts from academia participated in the project,
who developed methods, guidelines, and tools to support domain-specific modeling. The modeling
experts worked closely with the software engineers and accompanied the modeling process using
the respective recommendation components. As the software engineers had little experience with

150

DSLs, the recommendations obtained from SemNet mainly supported the domain analysis phase
to identify and agree on domain-specific terms that were later used in DSL’s meta-models. In
particular, the suggestions during the abstraction process helped to properly distinguish between
the class and instance levels. The analysis of the modeling sessions and the respective suggestions
showed that the ranking algorithms had to be improved (too general terms in the upper positions)
and that the software engineers had missed suggestions for relationships (associations) between
domain-specific terms. The extraction of verbal and ternary relationships was not available at
that time and was implemented later based on the requirements.

7.3 dwerft Research Project

Project Setting. The dwerft project1 was a three-year collaborative research effort (2014-2017)
by three academic partners (one computer science group and two groups involved in media pro-
duction) and eight companies involved in the production, distribution and archiving of film and
television programs. Dwerft aimed to apply Linked Data principles for all metadata exchanges at
every step of the media value chain. Starting with the initial idea of a script, all metadata is con-
verted according to either existing or newly developed ontologies and reused in subsequent steps
in the media value chain. Thus, metadata collected during media production becomes a valuable
asset not only for each step from pre- and post-production, but also for distribution and archiv-
ing. The project successfully integrated a number of film production tools based on the Linked
Production Data Cloud (LPDC), a technology platform for the film and television industry, to
enable the interoperability of software in the production, distribution and archiving of audiovisual
content.

Main Domain Modeling Results. The Linked Production Data Cloud stores and publishes
semantic metadata under a unified ontology schema. One of the main tasks of the project was the
development of this common data model, which conveys all the metadata originating from different
sub-tasks of the film production process (e.g., screenplay, production planning, set information,
post-production, distribution). The resulting Film Ontology [375] vocabulary was designed in
collaboration with domain experts to create appropriate terminology that describes the various
tasks of media production and all related metadata. The ontology schema is capable of representing
film scripts (e.g., scenes, scene content, characters, sets, etc.), production planning metadata (e.g.,
film crews, departments, cast, filming locations, shooting schedule, equipment used, etc.), on-set in-
formation (such as shots, takes, and associated clips), post-production metadata (e.g., time codes,
codecs, resolutions and formats of recorded and processed clips), rights management information,
and quality assessment metadata of archived audiovisual material (e.g., surface damage, splices,
bulges, glued areas, etc.). A visualization of the final project ontology is shown in Figure 7.2. It
can be downloaded from https://github.com/yovisto/dwerft/tree/master/tools/ontology.
An online version is available at http://filmontology.org.

Progress of the Thesis Contributions. During the time at HPI, SemNet was extended in
two ways. On the one hand, the extraction process was refined to cover both binary and ternary
noun-verb relationships. The context extension was implemented that allowed the recognition
of terms and relationships an order of magnitude larger than in the first version (a total of 5.9
million terms and 355 million binary relationships). OntoConnector has been enhanced to include
a template mechanism that enables the automated integration of knowledge bases with standard-
ized vocabulary models and the low effort integration of proprietary models and access methods.
Finally, the extended components were integrated into the DoMoRe recommendation system [320].

Lessons Learned. The contributing actors in the ontology design were domain experts of their
respective roles (mostly non-technical) and modeling experts responsible for creating the domain

1http://dwerft1.dwerft.de/

151

https://github.com/yovisto/dwerft/tree/master/tools/ontology
http://filmontology.org
http://dwerft1.dwerft.de/

technical...
(functional)

sourceFile
(functional)

DRA_tota...

DRA_color...
(functional)

DRA_length
(functional)

originalV...
(functional)

name
(functional)

DRA_colle...
(functional)

appearance
(functional)

FW_finan...
(functional)

DRA_emu...
(functional)

fileName
(functional)

cameraFps
(functional)

dayTime
(functional)

clipName
(functional)

imageDetail
(functional)

shotNumber
(functional)

DRA_re...
(functional)

DRA_depi...

FW_idRight
(functional)

uuid
(functional)

remarks

FW_rightType
(functional)

hasFacility

FW_days
(functional)

DRA_work...
(functional)

FW_idCh...
(functional)

totalAudio...

FW_idRe...
(functional)

sceneDes...
(functional)

DRA_condi...
(functional)

DRA_min
(functional)

DRA_cond...
(functional)

imageOrie...
(functional)

DRA_trac...
(functional)

FW_proc...
(functional)

hasShot

DRA_anal...
(functional)

umid
(functional)

audioFormat
(functional)

DRA_film...
(functional)

reformat
(functional)

hasTake

identifierL...
(functional)

setType
(functional)

relationsh...
(functional)

FW_partner
(functional)

pages
(functional)

hasFinalV...

FW_num...
(functional)

FW_idRe...
(functional)

DRA_film...
(functional)

hasShoot...

FW_rate
(functional)

scanning...
(functional)

involvedP...

FW_com...

hasEssence

DRA_bel...

hasCompany

DRA_me...
(functional)

DRA_noi...
(functional)

sceneCha...

ndFilterden...
(functional)

knDuration
(functional)

reelName
(functional)

crewCode
(functional)

lensSeria...
(functional)

zipCode
(functional)

directorName
(functional)

FW_isCo...
(functional)

streetName
(functional)

eyeIndex
(functional)

takeNumber
(functional)

DRA_re...
(functional)

FW_idCon...
(functional)

synopsis
(functional)

audioSam...
(functional)

storyDay
(functional)

FW_thres...
(functional)

resource...
(functional)

endTimecode
(functional)

pageEnd
(functional)

frameCount
(functional)

FW_idCo...
(functional)

dateCamera
(functional)

DRA_cond...
(functional)

ccShift
(functional)

identifier
(functional)

DRA_average
(functional)

departme...
(functional)

DRA_win...
(functional)

FW_perio...
(functional)

sceneInse...
(functional)

DRA_me...
(functional)

crewNumber
(functional)

FW_subscr...
(functional)

FW_notEx...
(functional)

scanning...
(functional)

aliasName

FW_inve...
(functional)

FW_hasR...

FW_perio...
(functional)

FW_licen...
(functional)

audioBitD...
(functional)

DRA_be...
(functional)

DRA_noi...
(functional)

FW_inves...
(functional)

tracks
(functional)

hasLocation

DRA_los
(functional)

FW_num...
(functional)

shooting...
(functional)

FW_subscr...
(functional)

FW_idOth...
(functional)

age
(functional)

castMember

interiorExte...
(functional)

countryName
(functional)

fullName
(functional)

pageStart
(functional)

DRA_repr...
(functional)

date
(functional)

socialStatus
(functional)

estimate...
(functional)

DRA_orde...

DRA_trac...
(functional)

DRA_work...
(functional)

FW_amount
(functional)

FW_reco...
(functional)

FW_area
(functional)

DRA_origi...
(functional)

auxiliaryT...
(functional)

tapeIdentifier
(functional)

resource...
(functional)

DRA_stor...

hasMedium

FW_furthe...

lensType
(functional)

fileSize
(functional)

trk1
(functional)

trk2
(functional)

lookName
(functional)

hasFile

hasAudioT...

DRA_arch...
(functional)

occupation

hasScript

producti...
(functional)

scriptDate
(functional)

DRA_work...
(functional)

crewMember

FW_charge
(functional)

chromaS...
(functional)

hasEmer...

resolution
(functional)

FW_paym...
(functional)

FW_idFina...
(functional)

sceneCon...

FW_idParti...
(functional)

masterSlave
(functional)binName

(functional)

FW_idLic...
(functional)

FW_licen...
(functional)

shutterAngle
(functional)

markIn
(functional)

scriptSour...

uncPath
(functional)

knStart
(functional)

DRA_fileURL

filePath
(functional)FW_min...

(functional)

DRA_frameIn
(functional)

supVersion
(functional)

FW_partic...
(functional)

sceneHeader
(functional)

FW_not...
(functional)

biography

fieldOrdering
(functional)

DRA_value
(functional)

importPlugin
(functional)

FW_contr...
(functional)

revision
(functional)

DRA_arch...
(functional)

driveName
(functional)

FW_main...
(functional)

circledTake
(functional)

yearOfPro...
(functional)

rating
(functional)

userInfo1
(functional)

DRA_dou...
(functional)

userInfo2
(functional)

shootingR...
(functional)

imageSha...
(functional)

cameraIden...
(functional)

cameraRoll
(functional)

manufacturer
(functional)

projectName
(functional)

FW_stand...
(functional)

FW_creati...
(functional)

operator...
(functional)

sourceRe...
(functional)

producti...
(functional)

DRA_ess...
(functional)

FW_idRe...
(functional)

lookUserLut
(functional)

timeLevel
(functional)

cameraSe...
(functional)

DRA_dete...

inOut
(functional)

slate
(functional)

cameraAss...
(functional)

sceneNu...
(functional)

FW_ownC...
(functional)

lookBurnedIn
(functional)

amaPlugin
(functional)

soundroll
(functional)

frameRate
(functional)

DRA_scenes
(functional)

FW_idCon...
(functional)

identifie...
(functional)

FW_hasCo...

scriptVersion
(functional)

hasClip

shooting...

DRA_tota...
(functional)

FW_inves...
(functional)

hasProduc...

tcIn
(functional)

shutterSpeed
(functional)

DRA_keeps

location
(functional)

FW_partici...
(functional)

shootDate
(functional)

facilityType
(functional)

hasVideoT...

FW_stre...
(functional)

DRA_film...
(functional)

FW_idEval...
(functional)

sensorFps
(functional)

comments
(functional)

sceneSet

colorSpace
(functional)

lutFileName
(functional)company

(functional)

titleType
(functional)

setLocation

FW_regist...
(functional)

DRA_condi...
(functional)

character...

DRA_elec...
(functional)

aspectRatio
(functional)

shooting...
(functional)

scriptDo...

captionInfo
(functional)

creationDate
(functional)

FW_hasR...

DRA_arch...
(functional)

DRA_perfo...
(functional)

episode...
(functional)

identifier...
(functional)

DRA_cont...

tcOut
(functional)

startTime...
(functional)

DRA_aver...
(functional)

hasShoot...

FW_idOth...
(functional)

FW_hasC...

sourceFil...
(functional)

cameraModel
(functional)

logline

hasTitle

cityName
(functional)

pixelaspect...
(functional)

FW_price...
(functional)

DRA_total...
(functional)

FW_involv...

description
(functional)

FW_selfE...
(functional)

storyTime
(functional)

videoBitDepth
(functional)

FW_initia...
(functional)

FW_regis...
(functional)

character...

FW_evalua...
(functional)

DRA_fra...
(functional)

hasSet

contactPe...

FW_hasRi...

frameWidth
(functional)

DRA_film...
(functional)

FW_idLo...
(functional)

sceneShots
(functional)

FW_strea...
(functional)

sex
(functional)

duration
(functional)

cinematog...
(functional)

markOut
(functional)

FW_hasRight

FW_dailyRate
(functional)

focusDist...
(functional)

hasCharacter

productio...
(functional)

sxsSn
(functional)

FW_coord...
(functional)

DRA_bar...
(functional)

FW_position
(functional)

castNumber
(functional)

fileType
(functional)

FW_partic...
(functional)

FW_loan...
(functional)

characte...
(functional)

produce...
(functional)

codec
(functional)

DRA_trac...
(functional)

FW_hasR...

hasEpisode

take
(functional)

DRA_film...
(functional)

FW_idOpt...
(functional)

address

setDescrip...

dayOfShoo...
(functional)

mfxProfile
(functional)

FW_idOrd...
(functional)

FW_idRe...
(functional)

DRA_max
(functional)

FW_workTitle
(functional)

colorLabel
(functional)

DRA_work...
(functional)

DRA_me...

lastModified
(functional)

setName
(functional)

internalIden...
(functional)

videoBitRate
(functional)

DRA_has...

FW_subscr...
(functional)

hasScene

inactiveFlag
(functional)

videoCodec
(functional)

seasonN...
(functional)

FW_option
(functional)

exposureI...
(functional)

DRA_condi...
(functional)

houseNu...
(functional)

sceneExtra

cameraName
(functional)

FW_criterion
(functional)

formatProfile

clipNumber
(functional)

titleText
(functional)

DRA_has...

FW_paym...
(functional)

DRA_affec...

FW_idCop...
(functional)

FW_min...
(functional)

FW_idLic...
(functional)

FW_paym...
(functional)

DRA_film...
(functional)

hobby

timeCamera
(functional)

FW_areIni...
(functional)

fstop
(functional)

whiteBalance
(functional)

FW_idCrea...
(functional)

FW_idRig...
(functional)

frameHeight
(functional)

hasCrew...

cameraIndex
(functional)

Essence

AudioTrack

DRA_Notch

CrewMember

FW_OtherRight

FW_Rights

Set

DRA_DensityRed

FW_Recoup...

FW_Recoupm...

DRA_Shrinkage

FW_CopyRight

ShootingDay

DRA_Density...

FW_Participat...

CastMember

DRA_Abnorm...

DRA_Bulge

Address

Location

Scene

DRA_Conditi...

FW_OtherCon...

DRA_Splice

FW_OptionCo...

DRA_FilmCon...

VideoTrack

FW_Financin...

DRA_Proxy

FW_Licence...

Title

CrewDepartment

FW_Evaluatio...

DRA_Density...

FW_ChargeR...

Emergency

ShootingSche...

DRA_FilmGrain

FW_LicenseR...

Facility

Script

IndividualProd...

DRA_PerfDa...

FW_LicenseC...

FW_Recoup...

DRA_CopiedE...

DwerftClass

FW_FurtherIn...

Character

DRA_SurfaceDirt

DRA_Density

FW_LoanCont...

DRA_Analys...

DRA_Surfac...

DRA_Steadin...

FW_Contract

FW_Creation...

DRA_Densit...

DwerftProject
File

Clip

FW_OrderPro...

Shot

Company

Episode

FW_RightOption

FW_CoProduc...

DRA_Institution

DRA_Density...

Production

Medium

Person

DRA_FilmTear

FW_ContractP...

Take

SeriesProduction

FW_Creation...

Extra

Thing

Thing

string

string

string

dateTime

float

string

float

string

string

int

int

int

string

int

int

string

string

float

string

string

int

string

string

string

float

string

string

string

string

float

string

int

string

string

string

string

string

int

int
float

string

int

string

string

dateTime

string

string

float

dateTime

string

float

int

string

string

string

boolean

string

string

int

float

string

boolean

string

string

string

string

string

dateTime

string

string

string

float

string

string

string

string

string

dateTime

string

int

string

string

string

string

int

string

int

int

int

string

string

int

int

string

string

string

dateTime

string

boolean

string

string

string

string

string

string

int

string

string

string

string
float

int

string

string

string

int

string

int

boolean

string

string

int

boolean

int

string

float

string

int

string

int

string

string

string

int

float

dateTime

string

string

float

string

boolean

int

string

string

float

int

string

string

string

dateTime

string

string

string

string

float

string

string

string

int

dateTime

string

string

string

string

string

string

string

string

string

string

string

string

string

int

string

string

string

string

string

string

int

float

string

string

string

boolean

string

string

int

dateTime

string

string

string

float

string

string

int

string

string

float

string

string

string

string

int

string

string

boolean

string

dateTime

int

string

int

string

string

string

int

float

float

string

string

string

string

int

int

string

string

string

string

string

string

string

string

float

float

int

int

int

string

string

string

dateTime

string

int

string

string

string

string

int

string

string

float

int

string

string

string

string

float

dateTime

int

string

string

string

string

int

string

string

string

float

int

string

string

float

int

string

string

string

string

string

string

boolean

float

float

int

int

int

string

float

int

string

float

boolean

string

int

string

int

string

string

int

string

string

string

float

string

string

string

int

int

string

int

string

float

string

int

string

string

string

string

string

Figure 7.2: Visualization of the dwerft project ontology for film production tool integration

models and metadata schemata. The ontology was designed in two iterations. The first itera-
tion was tool-oriented. Therefore, most domain knowledge was derived from data exported from
production tools using proprietary XML files. Domain experts of the early process steps and the
respective tool providers were consulted. The metadata integration, which was based on that first
version, worked well for the first part of the process chain, but connecting the subsequent steps
was difficult because mapping the data required more complex transformations and thus further
knowledge engineering. At this point, the project delivered a realistic use case, with which the
modeling suggestions of the DoMoRe recommendation system could be tested. For example, the
recommendations revealed that props (elements used in a scene) such as costumes were required
but could not be exported by the production planning tool. For this reason, an extension of the
API and the export format of the manufacturer was requested.

Due to the required advanced knowledge engineering, domain experts from almost all phases
of the media value chain actively participated in the second iteration of the ontology design. To
accomplish this, many interviews with domain experts had to be conducted in order to gather
domain-specific knowledge and discuss drafts of domain models. The extension of the ontology
schema allowed to further test the SemNet extraction process and the modeling recommendations
using terms from these additional areas of the media value chain. In a few experiments automated
modeling suggestions were used to support post-meeting modeling and interview preparation with
more extensive models that led to more efficient agreement on required metadata. Later in the

152

project, WebProtégé2 was used to enable interactive, distributed ontology development with the
help of employees from the partner companies that had more technical experience.

7.4 AdA Research Project

Project Setting. The interdisciplinary research group ”Audio-Visual Rhetorics of Affect”3 is
an ongoing collaboration (2017-2020) in which film scholars collaborate with computer scientists
to support empirical film studies using tool-based semantic video annotation and automated video
analytics. Film scholars explore the hypothesis that TV news draw on audio-visual patterns of film
productions to emotionally influence viewers by analyzing television reports, documentaries, and
genre films of the topic ”financial crisis.” In a comprehensive corpus analysis, they identify and
annotate low-to-high-level audio-visual patterns, such as shot duration, dominant colors, major-
minor tonality and depicted visual concepts. By comparing different annotations from different
scenes and genres, film scientists can analyze this opinion-forming level of reporting.

The aim of the project is to reduce the burden of elaborate, manual annotation routines in
order to accelerate the film-scientific analysis of audio-visual motion patterns at the level of larger
data sets. All annotation data and analysis results are published as Linked Open Data using the
project’s semantic vocabularies.

Main Domain Modeling Results. Film scientists carry out an in-depth corpus analysis by
precisely describing feature films, documentaries, and television news using a film-analytical an-
notation method called eMAEX4. The description requires a lot of manual effort and results in
hundreds of annotations per scene as ground truth data. One goal of the project is to publish
this valuable data as Linked Open Data in order to make these annotations available to other film
scholars as well as researchers from other fields.

Therefore, the AdA ontology [376], which is being developed, contains a vocabulary for fine-
grained semantic video annotations using film-analytical concepts and terms. The vocabulary
offers a number of categories under which a movie is analyzed (e.g., camera, image composition,
acoustics). Each category includes the respective concepts used to annotate the segments of a
movie (e.g., camera movement speed, field size). About 75% of the concepts have associated
predefined values (e.g., long shot, medium shot, close-up and others for field size). Others are free
text annotations, such as dialog transcriptions. Currently, the AdA ontology includes 9 categories
(annotation level), 78 concepts (annotation types), and 436 predefined annotation values. Part of
the vocabulary is visualized in Figure 7.3. It can be downloaded at github.com. An online version
is available at http://ada.filmontology.org/.

Progress of the Thesis Contributions. The very specialized film-analytical vocabulary of-
fered several use cases to test the DoMoRe recommendation system with rare domain-specific
terms. Thus, the lexical ranking could be improved in the recommendation component [377].

Lessons Learned. The collaboration in domain modeling is similar to the dwerft project. The
respective actors are domain experts (the film scholars) and modeling experts, who are respon-
sible for creating the vocabulary and ontology. In contrast, film scholars were unable to directly
participate in ontology design tasks using tools such as Protégé because they had no background
in information modeling or Semantic Web technologies, although they are tech-savvy. The film-
analytical method eMAEX was already very systematic in terms of the structuring of domain-
specific knowledge. This allowed us to set up a set of spreadsheet-based forms in which film
scholars were able to provide domain-specific concepts, terms, and descriptions using a familiar

2https://webprotege.stanford.edu/
3http://www.ada.cinepoetics.fu-berlin.de/en/
4eMAEX - Electronically-based Media Analysis of EXpressive movements —

https://empirische-medienaesthetik.fu-berlin.de/en/emaex-system/
6http://ada.filmontology.org/ontoviz/

153

https://github.com/ProjectAdA/public
http://ada.filmontology.org/
https://webprotege.stanford.edu/
http://www.ada.cinepoetics.fu-berlin.de/en/
https://empirische-medienaesthetik.fu-berlin.de/en/emaex-system/
http://ada.filmontology.org/ontoviz/

Figure 7.3: Visualization of parts of the AdA vocabulary for fine-grained semantic video annota-
tion, created using our visualization application6

software environment. The RDF mapping language (RML) [378] and the RML tools were then
used to automatically generate the project ontology from the semi-structured input data. As a
result, an almost automated process of ontology generation has been implemented that allows for
rapid response to concept and term changes. This was particularly helpful at the beginning of the
project and allowed rapid prototyping of the ontology at the stage when the input data changed
quite frequently.

The use of the recommendation system in this case was not so easy for the following reasons.
First, the film scholars had fairly clear ideas about the naming of concepts and the use of their
domain-specific terms. The agreement on the annotation types often led to longer internal discus-
sions by the domain experts, so that the quick recommendation of appropriate sets of terms was
not effective. Compared to the other projects, the structured domain knowledge was already well
prepared, but not machine-readable. Consequently, it was not a problem to develop a semantic
data model for the film analysis method to be used in a video annotation tool. Secondly, the field of
film analysis is very specialized, so that many terms could not be found either in connected know-
ledge bases or in SemNet (e.g., dialog tonality, image-intrinsic movement). Other large corpora of
this field were not available for analysis. Nonetheless, the vocabulary provided some interesting
examples of annotation-concept-annotation-value relationships, most of which are specialization
relationships (e.g., Recording Playback Speed - slow motion, timelapse, freeze). As the project
progresses, we will look more closely at identifying these relationships in SemNet.

154

Chapter 8

Conclusions and Outlook

8.1 Key Research Results

In this thesis, novel methods and tools to support domain modeling through automated knowledge
discovery and modeling recommendations were presented. Domain modeling is used to capture
concepts and relationships of a particular application field in domain models. They are a key
factor in improving communication and understanding in software development and a foundation
for generating software. We motivated the importance of domain modeling and the use of model-
driven engineering in industrial and academic software and data integration projects, as recent
studies have confirmed an increasing and mature dissemination of these model-driven practices.

Domain modeling is a challenging task, because it requires multidisciplinary collaboration and
information gathering from different groups of people, documents and other sources of knowledge.
One challenge is that gathering the necessary information and implementing it in domain models
is often very time-consuming. The methods developed here, which provide domain information
directly during modeling, are designed to prevent the initial effort from being considered too great
a hurdle, thereby omitting domain modeling. Two other challenges arise directly from the need to
obtain domain information from a variety of sources. First, the heterogeneity of the information in
terms of file formats, access methods, protocols, and schemata prevents consistent access to a large
amount of structured domain knowledge. In addition, the proportion of structured data is very low
compared to unstructured data such as textbooks, manuals or specifications. Relevant documents
containing the required information must be located and manually inspected to extract and model
the concepts and relationships of a domain. Second, although there are some useful knowledge
bases for domain modeling, most of them were created manually and are not extensive enough.
Approaches to automating the creation of knowledge bases from text are primarily focused on
factual knowledge at the instance level that cannot be used for domain modeling at the conceptual
level. The three challenges were addressed as follows.

The high cost of acquiring domain knowledge (Challenge 1) is approached by the context-aware
provision of domain knowledge. On the one hand, we have developed the Semantic Modeling
Support, a methodological foundation for providing modeling recommendations (Contribution 3).
For this, an iterative procedure was defined in which a user makes a specific change to a model
(refinement operation), domain information is queried based on the current state of the model
(knowledge acquisition), and suggestions are made to the user (element recommendation). A
number of modeling scenarios have been defined based on the types of operations a user can
perform to change a model. The semantic relationships used in domain models have been mapped
to lexical and knowledge modeling relationships as the basis for extracting information from text
datasets and structured knowledge sources. On the other hand, these methods were implemented
in a Domain Modeling Recommender System (Contribution 4) by enhancing the widely used
Ecore Diagram Editor of the Eclipse Modeling Project. Recommendations for class names and
association names in domain models are automatically generated using the knowledge resources

155

connected with the system. The recommendations are presented to the user with the Semantic
Autocompletion feature, which provides search engine-like behavior when entering the names of
model elements, and with the Model Advisor component, which displays contextual information
for the domain model.

The heterogeneity of available knowledge bases (Challenge 2) is addressed by an extensible
knowledge base query component. We have analyzed a number of existing sources of knowledge
regarding contained lexical and conceptual knowledge and how this knowledge can be used for do-
main modeling. The knowledge bases were exemplarily integrated by developing a query procedure
and the corresponding SPARQL queries for terms and their relationships and by implementing
result integration and the corresponding mapping to modeling language constructs. These ex-
amples were the foundation for building our Mediator-Based Querying Architecture with
Generic Templates (Contribution 2) for knowledge base integration. It provides unified access
to information about terms and their relationships contained in knowledge bases at the schema
level, in intermediate data models, and at the instance level. It also allows the near-automated
integration of a wide range of knowledge bases that use a Lemon lexicon, OWL schema, or SKOS
vocabulary, as well as the integration of other proprietary knowledge bases that provide SPARQL
endpoints or JSON-LD APIs.

The unavailability of large conceptual knowledge resources (Challenge 3) is addressed through
the automated extraction of semantically related terms from large-scale natural language datasets.
A text analysis process has been developed that is capable of extracting terms and their relation-
ships directly from N-gram corpus data. This type of extraction has the distinct advantage of
eliminating the need to process the complete sentences of the original corpus, which is several
orders of magnitude larger. Our approach relies on a set of syntactic part-of-speech patterns to
recognize single-word terms and multiword expressions by applying hierarchical pattern matching
to preprocessed 5-grams and generated 6-grams of the Google Books N-gram dataset. The 6-grams
were obtained with a specially designed context extension algorithm using some effective heuristics
to produce only useful 6-grams. This has increased the number of recognized terms by more than
60% and the number of recognized relationships by more than an order of magnitude. Extraction
explicitly focused on conceptual terms, which is why proper nouns and named entities are ignored.
As the extraction is based only on syntactic properties of sentences and statistical features of text
corpora, it is completely domain-independent and can be easily transferred to other languages.
Relationships between terms are determined using their co-occurrences and N-gram frequencies
as input to methods of distribution semantics. As a result, we were able to create a Semantic
Network of Related Terms (Contribution 1) consisting of nearly 6 million nouns, noun phrases
and verbs, and over 355 million binary and ternary relationships that directly allows to answer
top-N queries. SemNet is made publicly available with accompanying interfaces.

Table 8.1 summarizes the challenges of the thesis, how they have been approached, and what
contributions the dissertation has achieved. The methods and tools developed in this work have
been continuously applied and improved in various contexts. Three research projects have been
conducted with industry and academia, where semantic modeling support and the recommendation
system have helped to improve and make domain modeling tasks more efficient in several domains.

At the beginning of the PhD project the question was raised ”How to improve the develop-
ment of domain models through automated knowledge acquisition?”. It has been shown that a
recommender system implementing context-sensitive modeling suggestions is a well-working tool
to support domain modeling. It was further asked ”Where does the required knowledge come
from?”. This work provided an in-depth analysis of several structured knowledge sources and
a large unstructured text dataset to enable the acquisition of lexical knowledge for model ele-
ment recommendations. It has been questioned ”How can the necessary knowledge be acquired
automatically?”. The thesis developed appropriate extraction methods and components that en-
able transparent on-demand access to terms and their relationships in knowledge bases and text
document collections. It was also asked ”How can the acquired knowledge be used to improve
modeling?”. The different representations of domain models, knowledge bases and textual content
have been connected using semantic relationship mappings that enable the automated transfor-
mation of the acquired knowledge into modeling recommendations. Finally, it was asked ”How

156

Challenge Objective Approach Contribution

Cost of domain
knowledge
acquisition

Develop
methodological
foundations

Iterative procedure
with modeling
support scenarios

Semantic modeling
support
(Chapter 3)

Automatically
provide domain
information

Context-sensitive
suggestions of
model elements

DoMoRe
recommendation
system (Chapter 6)

Heterogeneity
of knowledge
bases

Transparent
access to lexical
knowledge

Mediator-based
knowledge base
querying

OntoConnector
with knowledge
base templates
(Chapter 5)

Lack of
conceptual
knowledge
resources

Automated
construction of
semantic
networks of
related terms

N-Gram based text
analysis and
distributional
semantics

SemNet knowledge
base with detailed
extraction process
(Chapter 4)

Table 8.1: Summary of the contributions of this thesis

does model development affect the acquisition of knowledge?”. The iterative process of model re-
finement, knowledge acquisition, and element recommendation allows to query and provide the
necessary domain knowledge at any given time for each development state of the domain model,
keeping the human in the loop.

The results of my dissertation have been published in the following core research and application-
oriented papers, which are briefly described in the following paragraphs.

Core Research Papers. ”Supporting Software Language Engineering by Automated Domain
Knowledge Acquisition” by H. Agt [371] is the first paper in the course of the thesis published
and presented at the Doctoral Symposium of the MODELS 2011 conference, the premier
international conference series on model-driven engineering languages and systems. The paper
describes the PhD proposal, concept of the dissertation, reviews related work, and presents first
results of the proposed solution. The paper was assigned a mentor, Bran Selic, a recognized
pioneer in the application of model-driven engineering in industrial settings. He was responsible
for reviewing and discussing the paper during the symposium1. The paper was selected as best
paper [379] together with a second paper for publication (acceptance rate 20%).

”Guidance for Domain Specific Modeling in Small and Medium Enterprises” by H. Agt, R.-D.
Kutsche, T. Wegeler [374] is the second paper which was accepted as full paper at the Workshop
on Domain-Specific Modeling at the OOPSLA 2011 conference. The DSM workshop
series has a long history and is a premier forum for a domain-specific language and modeling
solutions. The paper describes the concept and first results of modeling guidance for domain-
specific language development. It includes the description of the implementation of modeling
suggestions based on querying multiple knowledge bases (part by Henning Agt). The paper was co-
authored with Timo Wegeler (a project colleague from Fraunhofer – responsible for the framework
part).

”SemAcom: A System for Modeling with Semantic Autocompletion” by H. Agt [373] is a demon-
stration accepted at the MODELS 2012 conference. The demo paper describes the semantic
autocompletion function for domain modeling based on the semantic network of terms. The

1http://ecs.victoria.ac.nz/Events/MODELS2011/Symposia

157

http://ecs.victoria.ac.nz/Events/MODELS2011/Symposia

demonstration at the conference included a booth with a poster throughout the conference and a
short presentation of the paper.

”Automated Construction of a Large Semantic Network of Related Terms for Domain-Specific
Modeling” by H. Agt, R.-D. Kutsche [372] is the fourth paper that was accepted as full paper at the
main research track of the CAiSE 2013 conference. CAiSE is a CORE A ranked conference
and the premier conference series for information systems engineering. The paper describes the
detailed construction of SemNet, the extraction of semantically related terms from text datasets,
based on natural language processing and statistical semantics, and its application in a domain
modeling context (acceptance rate 16.6%).

”DoMoRe – A Recommender System for Domain Modeling” by H. Agt-Rickauer, R.-D. Kutsche,
H. Sack [320] is the fifth full paper in the context of the dissertation. It was published and
presented at the MODELSWARD 2018 conference (acceptance rate 25.1%). The conference
is the leading European conference series on Model-Driven Engineering. The paper describes
the recommender system as a whole with a focus on support scenarios, extensions of SemNet,
recommendation generation and practical application of the system. The paper was selected for
extended publication by the program committee.

”Automated Recommendation of Related Model Elements for Domain Models” by H. Agt-
Rickauer, R.-D. Kutsche, H. Sack [377] is the sixth full paper in the course of the thesis and
an extended version of [320]. The article was published in a special issue of the Springer
CCIS series 2019 and provides more detailed descriptions and examples of the semantic net-
work, additional details on the recommendation generation and on the implementation of the
recommender system, as well as additional related work.

Application-Oriented Papers. ”SemAcom: A System for Modeling with Semantic Autocom-
pletion” by H. Agt [373] was not only a demo paper at the MODELS 2012 conference but also
describes the first application of SemNet in the medical domain in the context of the BIZWARE
research project.

”Quantitative Analysis of Art Market Using Ontologies, Named Entity Recognition and Machine
Learning: A Case Study.” by D. Filipiak, H. Agt-Rickauer, C. Hentschel, A. Filipowska, H.
Sack [380] was a full paper at the BIS 2016 conference. The paper was developed in cooperation
with Poznan University and describes a data-oriented approach to art market analysis. I was
responsible for the knowledge base, ontology and data collection part. The recommender system
was applied during the development of the art market data model. The paper received the best
paper award.

”Data Integration for the Media Value Chain” by H. Agt-Rickauer, J. Waitelonis, T. Tietz,
H. Sack [375] was a poster paper at the ISWC 2016 conference. The paper describes the
successful integration of a set of film production tools based on the Linked Production Data
Cloud, a technology platform for the film and TV industry to enable software interoperability
used in production, distribution, and archiving of audiovisual content. The recommender system
was used during the development of the project ontology that is used for data integration.

”Semantic Annotation and Automated Extraction of Audio-Visual Staging Patterns in Large-
Scale Empirical Film Studies” by H. Agt-Rickauer, C. Hentschel, H. Sack [376] was a poster paper
at the SEMANTiCS 2018 conference. The paper describes the development of a vocabulary
for fine-grained semantic video annotation and its application in tool-supported empirical film
studies. The recommender system was used during the development of the project vocabulary.

158

8.2 Future Work

This dissertation contributes to the fields of domain modeling, knowledge acquisition, and infor-
mation integration. In the course of the work, the main emphasis had to be placed on certain
languages, methods, and resources for developing a fully functional recommendation system. For
example, UML class diagrams, count-based distributional models, and the English language were
selected. During the research it became evident that certain limitations could not be addressed in
this thesis. Hence, we suggest possible directions of how future research could extend the seman-
tic modeling support to a wider scale, of how further challenges of knowledge extraction could be
tackled, thus addressing the discovered limitations.

Support for More Languages The adaptation of the semantic modeling support and the
recommender system to more languages is twofold: (1) On the one hand, we refer to more modeling
languages (e.g., ER Diagrams, RDFS/OWL schema) and respective modeling tools that can be
supported with the methods and resources developed in this thesis. The required steps to achieve
modeling support for these languages and tools are: (a) The extension and customization of the
respective modeling tool to integrate the Model Advisor and Semantic Autocompletion feature.
(b) The development of additional semantic relationship mappings for the respective modeling
language to be able to transform domain knowledge into appropriate modeling recommendations.
A good candidate for demonstrating the recommender system in the area of ontology design is the
recently published new version of WebProtégé, a cloud-based ontology editor [381].

(2) On the other hand, support for more natural languages is required to suggest domain-
specific terms and relationships for models formulated in other languages than English. That
would have been very helpful, for example, in the dwerft project, where many discussions with
domain experts were conducted in German. The extraction methods developed in this thesis rely
for the most part on statistical features of large text corpora that can be applied across languages.
Only the used POS tagging is language-dependent because a fine-grained lexical categorization
is required for conceptual term detection. Consequently, the construction of semantic networks
can be transferred to many other segmented Indo-European languages (e.g., German, French,
Spanish). The following steps are necessary for the implementation: (a) The use of corpora
of the respective language and their derived N-gram datasets. For example, the Google Books
N-gram dataset provides downloads2 for French, German, and Italian. However, the required N-
gram counts for the extraction procedure can be obtained from any other corpus. (b) The use of
language-specific part-of-speech taggers and respective tagsets and the adaptation of the syntactic
extraction patterns to the respective language-specific tagset.

Creating semantic networks for each single language is one option, as it was recently done, for
example, in the field of word embeddings [382]. In contrast, several approaches have been proposed
in the last few years to create bilingual and multilingual word embeddings, which combine several
languages in the same vector space, based either on multilingual encyclopedias and knowledge
bases or based on parallel and comparable corpora (for an overview, see the survey by Ruder
et al. [383]). Building a multilingual SemNet requires generating parallel N-gram data, which is
challenging due to the different word orders and use of compounds in each language. To some
extent this has been addressed by N-Gram based machine translation [384], but is still subject to
research.

Conceptual Knowledge Extraction SemNet has taken a significant step in extracting concep-
tual knowledge. However, there is still room for improvement and development of new methods, as
shown by recent activities in the research community. A major disadvantage of vector space models
is that they establish relationships using distances or information-theoretical measurements (con-
tinuous values), but cannot extract specific types of relationships. Therefore, we have combined
SemNet with lexical information from knowledge bases on the application side. Extracting specific
conceptual relationships is important in building large conceptual and common sense knowledge

2http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

159

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

bases. An example is the field of taxonomy extraction (e.g., as defined in SemEval-2016 Task
13 [385]). This is a more complex task than detecting hypernym relationships as suggested by
Hearst more than 25 years ago [120]. In this particular evaluation, participants had great difficulty
delivering extracted taxonomies that were qualitatively superior to a simple string subsequence
baseline. For this reason, the difficulty of the task has been reduced in the following years [123].
Recently, taxonomy extraction was tackled through the combination of supervised learning and
word embeddings [386]. We also suggest that such a combination of methods should be pursued
not only for taxonomic relationships but also for other conceptual relationships, in order to ad-
vance the construction of large common sense knowledge bases [387, 388]. This is also confirmed
by the fact that in the field of distributed semantic representations work is being done to integrate
word meanings into the corresponding models [389, 390].

Further Possibilities for Improvement In addition to the future work on additional language
support and advanced conceptual knowledge acquisition, this paragraph discusses at which points
of the work limitations exist and how they can be tackled.

In Chapter 3 the iterative procedure of Semantic Modeling Support has been presented. The
approach assumes that all sources of knowledge can be queried directly, which has led to the
decision that SemNet is generated in an offline extraction process. On the one hand, the effort
of connecting new knowledge bases to OntoConnector is minimal, and the extraction of semantic
networks from completely new text records is fully automatic. On the other hand, such analyses
take too long to be used for ad hoc knowledge acquisition because certain characteristics of the en-
tire corpus must be determined when using distributional approaches. This research challenge also
exists for machine learning approaches that require a computationally intensive training phase.
Ad hoc extraction is achieved to some extent by declarative extraction systems and stream pro-
cessing, such as those implemented in recent versions of SystemT [391] and Apache Flink [392]. To
enable ad hoc extraction, the architecture of the DoMoRe system would have to be fundamentally
changed. One option is to develop a component for in-depth analysis (in the sense of grammatical
analysis) of short and medium length technical documents that are often part of software projects.

In Chapter 4 the extraction methods for building SemNet have been presented. A design choice
was to optimize the process for single-machine in-memory processing to efficiently perform some of
the frequency aggregations. This limits the approach to the size of the main memory (64 GB was
sufficient for all steps in this thesis). Alternatively, the extraction can be performed distributed
using, for example, Apache OpenNLP and / or NLTK with Apache Spark. For most operations,
the overhead of a distributed framework would not have been justified except for the required
POS tagging, which took the longest compared to the rest of the extraction. However, there is no
alternative to distributed processing for larger N-gram datasets than the Google Books N-gram
dataset, which can contain longer, and therefore much more, N-grams.

Identification of conceptual terms has been implemented similar to the robust extraction of
technical terms proposed in the literature, using a small set of syntactic patterns that have been
verified using a number of existing knowledge base schemas. However, this limits the flexibility
to adapt to differently structured N-Gram datasets (e.g., in the case of not tokenized hyphenated
words) because manual adjustments are necessary. Alternatively, pattern learning may be imple-
mented with a distant supervision approach using seeds of concept terms from ontology schemas.
This would probably have allowed patterns to be used that were discarded because of too many
false positives (e.g., terms containing a gerund), but such an approach is still difficult to implement
if a context of only five or six words is analyzed.

The evaluation of SemNet was carried out by quantitatively comparing with existing knowledge
databases and by measuring term and relationship coverage. Two complementary qualitative
approaches should be addressed in future work: (1) A ranking-based evaluation that measures the
performance of top-N queries to SemNet. The steps required for the implementation are: (a) The
compilation of a set of query terms and the generation of a dataset of corresponding ranked lists
of related terms for each knowledge source. (b) A user study that provides relevance judgments
by directly comparing rankings presented in random order. (c) The assessment of the user ratings.

160

(2) A controlled experiment to measure the overall efficiency of the recommendation system. The
steps required for implementation are: (a) The participants are introduced to the modeling tool
and asked to perform multiple domain modeling tasks. (b) Subjects are randomly subdivided into
a treatment group using the tool with recommendations of related model elements and a control
group modeling without recommendations. (c) Results from both groups are then compared to
predefined solutions from domain experts to measured the outcome variables time on task and
model completeness.

In Chapter 5, mediator-based knowledge base querying was developed as part of the Onto-
Connector component. The approach requires a permanent Internet connection and is to some
extent prone to error if connected SPARQL endpoints cannot be reached. In contrast, SemNet
is always installed locally with the modeling tool. One possible solution to the unavailability of
knowledge bases is the implementation of a caching mechanism and the prefetching of data if the
domain of interest can be determined by some example terms. Using data dumps is also possible,
but a more balanced way is to use Linked Data Fragments [393]. OntoConnector does not yet
have a user-friendly interface to help complete the provided SPARQL templates. An important
feature to implement is the automatic discovery of suitable relationship names in newly connected
knowledge bases for mapping to our lexical queries.

Chapter 6 presented the implemented recommendation system DoMoRe. Recommendations
are mainly provided using element names in either the Model Advisor or the Semantic Auto-
completion feature. An important research task is how visual representations of the collected
knowledge (e.g., in the form of diagram fragments) can be generated. Integrating the recommen-
dation functionality into the Ecore Diagram Editor has been difficult as the tool is partially made
up of generated code and does not provide the necessary interfaces. This resulted in a very tightly
coupled implementation that prevented the use of automatic updates of the editor.

Finally, semantic modeling support cannot only be used to suggest what to include in a model
and to recommend the most relevant names of model elements. Knowledge bases and semantic
networks can also be used to implement an evidence-based verification of conceptual models to
automatically identify semantically incorrect modeling constructs. This includes, for example, the
detection of misused relationship types (e.g., ”doctor” and ”surgeon” connected with an aggrega-
tion relationship), the localization of directed relationships pointing in the wrong direction (e.g.,
”doctor” subclassOf ”surgeon”), and finding concepts that have too much semantic distance to
the rest of the model (e.g., ”doctor”, ”surgeon”, and ”plywood”).

161

162

Bibliography

[1] Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10) (1972) 859–866

[2] Bauer, F.L.: Software engineering — wie es begann. Historische Notizen zur Informatik
(2009) 72–75

[3] Shaw, M.: Abstraction techniques in modern programming languages. IEEE software (4)
(1984) 10–26

[4] Selic, B.: Personal reflections on automation, programming culture, and model-based soft-
ware engineering. Automated Software Engineering 15(3-4) (2008) 379–391

[5] Cuadrado, J.S., Izquierdo, J.L.C., Molina, J.G.: Applying model-driven engineering in small
software enterprises. Science of Computer Programming 89 (2014) 176–198

[6] Bruel, J.M., Combemale, B., Ober, I., Raynal, H.: Mde in practice for computational
science. Procedia Computer Science 51 (2015) 660–669

[7] Booch, G., Rumbaugh, J., Jacobson, I.: Unified modeling language (uml). World Wide
Web: http://www. rational. com/uml/(UML Resource Center) 94 (1998)

[8] Petre, M.: Uml in practice. In: Proceedings of the 2013 International Conference on Software
Engineering, IEEE Press (2013) 722–731

[9] Kelly, S., Lyytinen, K., Rossi, M.: Metaedit+ a fully configurable multi-user and multi-
tool case and came environment. In: Advanced Information Systems Engineering, Springer
(1996) 1–21

[10] Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven engi-
neering. Software, IEEE 31(3) (2014) 79–85

[11] Whittle, J., Hutchinson, J.: Mismatches between industry practice and teaching of model-
driven software development. In: Models in Software Engineering. Springer (2011) 40–47

[12] Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B.H., Collet, P., Combemale, B.,
France, R.B., Heldal, R., Hill, J., et al.: The relevance of model-driven engineering thirty
years from now. In: Model-Driven Engineering Languages and Systems. Springer (2014)
183–200

[13] Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press (March 2008)

[14] Fowler, M.: Domain Specific Languages. Addison-Wesley, Boston (2010)

[15] Hermans, F., Pinzger, M., Van Deursen, A.: Domain-specific languages in practice: A user
study on the success factors. Springer (2009)

[16] Selic, B.: The pragmatics of model-driven development. IEEE software 20(5) (2003) 19

163

[17] Andersson, H., Herzog, E., Johansson, G., Johansson, O.: Experience from introducing
unified modeling language/systems modeling language at saab aerosystems. Systems Engi-
neering 13(4) (2010) 369–380

[18] Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial adoption of
model-driven engineering: Are the tools really the problem? In: Model-Driven Engineering
Languages and Systems. Springer (2013) 1–17

[19] Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used uml diagrams? a
preliminary survey. In: EESSMOD@ MoDELS. (2013) 3–12

[20] Burden, H., Heldal, R., Whittle, J.: Comparing and contrasting model-driven engineering
at three large companies. In: Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ACM (2014) 14

[21] Hebig, R., Bendraou, R., Völter, M., Chaudron, M.R.: Model-driven development processes
and practices: Foundations and research perspectives. In: MD2P2@ MoDELS. (2014) 2–6

[22] Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering practices in industry:
Social, organizational and managerial factors that lead to success or failure. Science of
Computer Programming 89 (2014) 144–161

[23] Petre, M.: “no shit” or “oh, shit!”: responses to observations on the use of uml in professional
practice. Software & Systems Modeling 13(4) (2014) 1225–1235

[24] Gorschek, T., Tempero, E., Angelis, L.: On the use of software design models in software
development practice: An empirical investigation. Journal of Systems and Software 95
(2014) 176–193

[25] Reggio, G., Leotta, M., Ricca, F.: Who knows/uses what of the uml: a personal opinion
survey. In: Model-Driven Engineering Languages and Systems. Springer (2014) 149–165

[26] Whittle, J., Rouncefield, H.B., Heldal, R., Kristoffersen, S.: How industry uses mde. (2015)

[27] Vetro, A., Bohm, W., Torchiano, M.: On the benefits and barriers when adopting soft-
ware modelling and model driven techniques - an external, differentiated replication. In:
Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE International
Symposium on, IEEE (2015) 1–4

[28] Sobernig, S., Hoisl, B., Strembeck, M.: Extracting reusable design decisions for uml-based
domain-specific languages: A multi-method study. Journal of Systems and Software 113
(2016) 140–172

[29] Chaudron, M.R.: Empirical studies into uml in practice: pitfalls and prospects. In: 2017
IEEE/ACM 9th International Workshop on Modelling in Software Engineering (MiSE),
IEEE (2017) 3–4

[30] Budgen, D., Burn, A.J., Brereton, O.P., Kitchenham, B.A., Pretorius, R.: Empirical ev-
idence about the uml: a systematic literature review. Software: Practice and Experience
41(4) (2011) 363–392

[31] Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., Reggio, G.: Preliminary findings from a
survey on the md state of the practice. In: Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, IEEE (2011) 372–375

[32] Broy, M.: Domain modeling and domain engineering: Key tasks in requirements engineering.
In: Perspectives on the Future of Software Engineering. Springer (2013) 15–30

[33] Prieto-Dı́az, R.: Domain analysis: An introduction. ACM SIGSOFT Software Engineering
Notes 15(2) (1990) 47–54

164

[34] Iscoe, N., Williams, G.B., Arango, G.: Domain modeling for software engineering. In:
Software Engineering, 1991. Proceedings., 13th International Conference on, IEEE (1991)
340–343

[35] Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models. Software &
Systems Modeling 7(3) (2008) 345–359

[36] Bera, P., Evermann, J.: Guidelines for using uml association classes and their effect on
domain understanding in requirements engineering. Requirements Engineering 19(1) (2014)
63–80

[37] Evermann, J., Wand, Y.: Ontology based object-oriented domain modeling: represent-
ing behavior. Theoretical and Practical Advances in Information Systems Development:
Emerging Trends and Approaches: Emerging Trends and Approaches (2011) 37

[38] Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling
— a research agenda. Information Systems Research 13(4) (2002) 363–376

[39] Evans: Domain-Driven Design: Tacking Complexity In the Heart of Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

[40] Mylopoulos, J.: Conceptual modelling and telos 1 (2008)

[41] Larman, C.: Applying UML and patterns: an introduction to object oriented analysis and
design and interactive development. Pearson Education India (2012)

[42] Lukyanenko, R., Parsons, J.: Is traditional conceptual modeling becoming obsolete? In:
International Conference on Conceptual Modeling, Springer (2013) 61–73

[43] Hoisl, B., Sobernig, S., Strembeck, M.: A catalog of reusable design decisions for developing
uml/mof-based domain-specific modeling languages. (2015)

[44] Landre, E., Wesenberg, H., Olmheim, J.: Agile enterprise software development using
domain-driven design and test first. In: Companion to the 22nd ACM SIGPLAN conference
on Object-oriented programming systems and applications companion, ACM (2007) 983–993

[45] Nilsson, J.: Applying domain-driven design and patterns: with examples in C# and. NET.
Pearson Education (2006)

[46] Vernon, V.: Implementing domain-driven design. Addison-Wesley (2013)

[47] Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-driven software development
- technology, engineering, management. Pitman (2006)

[48] Gamma, E., Johnson, R., Helm, R., Vlissides, J.: Entwurfsmuster: Elemente wiederver-
wendbarer objektorientierter Software. Pearson Deutschland GmbH (2011)

[49] Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: A systematic mapping study.
Information and Software Technology 71 (2016) 77–91

[50] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs from
architectural languages: A survey. Software Engineering, IEEE Transactions on 39(6) (2013)
869–891

[51] Braun, R.: Towards the state of the art of extending enterprise modeling languages. In:
Model-Driven Engineering and Software Development (MODELSWARD), 2015 3rd Inter-
national Conference on, IEEE (2015) 1–9

[52] Tairas, R., Cabot, J.: Corpus-based analysis of domain-specific languages. Software &
Systems Modeling 14(2) (2015) 889–904

165

[53] Erickson, J., Siau, K.: Can uml be simplified? practitioner use of uml in separate domains.
In: proceedings EMMSAD. Volume 7. (2007) 87–96

[54] Reggio, G., Leotta, M., Ricca, F., Clerissi, D.: What are the used activity diagram con-
structs? a survey. In: Model-Driven Engineering and Software Development (MODEL-
SWARD), 2014 2nd International Conference on, IEEE (2014) 87–98

[55] Jacobson, I.: Taking the temperature of uml. WEB site blog. ivarjacobson. com/taking-the-
temperature-of-uml (2009)

[56] Linthicum, D.S.: Enterprise application integration. Addison-Wesley Professional (2000)

[57] Lheureux, B., Pezzini, M., Thompson, J., Altman, R., Sholler, D., Schulte, W., Malinverno,
P., Knipp, E.: Predicts 2013: Application integration. Gartner Report (2012)

[58] Hohpe, G., Woolf, B.: Enterprise integration patterns: Designing, building, and deploying
messaging solutions. Addison-Wesley Professional (2004)

[59] Ziegler, P., Dittrich, K.R.: Three decades of data integration—all problems solved? In:
Building the Information Society. Springer (2004) 3–12

[60] Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing legacy systems: software technologies,
engineering processes, and business practices. Addison-Wesley Professional (2003)

[61] Force, A.T.: Architecture-driven modernization scenarios. OMG, USA (2006)

[62] Erlikh, L.: Leveraging legacy system dollars for e-business. IT professional 2(3) (2000)
17–23

[63] Erl, T.: Service-oriented architecture: concepts, technology, and design. Pearson Education
India (2005)

[64] Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE
Transactions on Cloud Computing 1(2) (2013) 142–157

[65] Bergmayr, A., Bruneliere, H., Izquierdo, J.L.C., Gorronogoitia, J., Kousiouris, G., Kyriazis,
D., Langer, P., Menychtas, A., Orue-Echevarria, L., Pezuela, C., et al.: Migrating legacy
software to the cloud with artist. In: Software Maintenance and Reengineering (CSMR),
2013 17th European Conference on, IEEE (2013) 465–468

[66] Rugaber, S., Stirewalt, K.: Model-driven reverse engineering. IEEE software 21(4) (2004)
45–53

[67] Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: Modisco: A model driven reverse engineer-
ing framework. Information and Software Technology 56(8) (2014) 1012–1032

[68] Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliogra-
phy. Sigplan Notices 35(6) (2000) 26–36

[69] Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages.
ACM Comput. Surv. 37 (December 2005) 316–344

[70] Van Deursen, A., Klint, P.: Domain-specific language design requires feature descriptions.
CIT. Journal of computing and information technology 10(1) (2002) 1–17

[71] Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schindler, M., Völkel, S.: Design guide-
lines for domain specific languages. arXiv preprint arXiv:1409.2378 (2014)

[72] Kantor, P.B., Rokach, L., Ricci, F., Shapira, B.: Recommender systems handbook. Springer
(2011)

166

[73] Burke, R.: Hybrid recommender systems: Survey and experiments. User modeling and
user-adapted interaction 12(4) (2002) 331–370

[74] He, C., Parra, D., Verbert, K.: Interactive recommender systems: a survey of the state of
the art and future research challenges and opportunities. Expert Systems with Applications
56 (2016) 9–27

[75] Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann, T.: Recommendation systems in
software engineering. Springer Science & Business (2014)

[76] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing knowledge
about information systems. ACM Transactions on Information Systems (TOIS) 8(4) (1990)
325–362

[77] Störrle, H.: Structuring very large domain models: experiences from industrial mdsd
projects. In: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, ACM (2010) 49–54

[78] Prakash, N., Rolland, C., Pernici, B.: Use of domain knowledge for requirements validation.
In: Information System Development Process: Proceedings of the IFIP WG8. 1 Working
Conference on Information System Development Process, Como, Italy, 1-3 September, 1993.
Volume 30., Elsevier (1993) 99

[79] Frank, U.: Multi-perspective enterprise modeling: foundational concepts, prospects and
future research challenges. Software & Systems Modeling 13(3) (2014) 941–962

[80] Dong, X.L., Srivastava, D.: Big data integration. In: Data Engineering (ICDE), 2013 IEEE
29th International Conference on, IEEE (2013) 1245–1248

[81] Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: International
Conference on Conceptual Modeling, Springer (2013) 1–8

[82] Gruber, T.R.: The acquisition of strategic knowledge. Elsevier (1988)

[83] Sutcliffe, A., Sutcliffe, A.: The Domain Theory: Patterns for knowledge and software reuse.
CRC Press (2002)

[84] Kidd, A.: Knowledge acquisition for expert systems: A practical handbook. Springer Science
& Business Media (1987)

[85] Reinhartz-Berger, I.: Towards automatization of domain modeling. Data & Knowledge
Engineering 69(5) (2010) 491–515

[86] Tacla, C.A., Freddo, A.R., Paraiso, E.C., Ramos, M.P., Sato, G.Y.: Supporting small teams
in cooperatively building application domain models. Expert Systems with Applications
38(2) (2011) 1160–1170

[87] Reinhartz-Berger, I., Cohen, S., Bettin, J., Clark, T., Sturm, A.: Domain engineering.
Springer (2013)

[88] Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods, Evaluation
and Applications. Volume 123 of Frontiers in Artificial Intelligence and Applications Series.
IOS Press, Amsterdam (7 2005)

[89] Davidov, D.: Classification of semantic relationships between nominals using pattern clus-
ters. In: Proceedings of ACL 2008. (2008) 227–235

[90] Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A., Nordmoen, B., Fritzsche,
M.: Where does model-driven engineering help? experiences from three industrial cases.
Software & Systems Modeling 12(3) (2013) 619–639

167

[91] Modoni, G.E., Caldarola, E.G., Terkaj, W., Sacco, M.: The knowledge reuse in an industrial
scenario: A case study (2015)

[92] Omoronyia, I., Sindre, G., St̊alhane, T., Biffl, S., Moser, T., Sunindyo, W.: A domain
ontology building process for guiding requirements elicitation. In: International Working
Conference on Requirements Engineering: Foundation for Software Quality, Springer (2010)
188–202

[93] Ionita, D., Wieringa, R., Bullee, J.W., Vasenev, A.: Tangible modelling to elicit domain
knowledge: an experiment and focus group. In: Conceptual Modeling. Springer (2015)
558–565

[94] Damian, D., Helms, R., Kwan, I., Marczak, S., Koelewijn, B.: The role of domain knowl-
edge and cross-functional communication in socio-technical coordination. In: 2013 35th
International Conference on Software Engineering (ICSE), IEEE (2013) 442–451

[95] Koskinen, K.U., Pihlanto, P., Vanharanta, H.: Tacit knowledge acquisition and sharing in
a project work context. International journal of project management 21(4) (2003) 281–290

[96] Ryan, S., O’Connor, R.V.: Acquiring and sharing tacit knowledge in software development
teams: An empirical study. Information and Software Technology 55(9) (2013) 1614–1624

[97] Smith, E.A.: The role of tacit and explicit knowledge in the workplace. Journal of knowledge
Management 5(4) (2001) 311–321

[98] Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured information pro-
cessing in the corporate research environment. Natural Language Engineering 10(3-4) (2004)
327–348

[99] Busse, S., Kutsche, R.D., Leser, U., Weber, H.: Federated information systems: Concepts,
terminology and architectures. Forschungsberichte des Fachbereichs Informatik 99(9) (1999)

[100] Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to information retrieval.
Volume 1. Cambridge university press Cambridge (2008)

[101] Leser, U., Naumann, F.: Informationsintegration. dpunkt, Heidelberg (2007)

[102] Gandon, F., Sabou, M., Sack, H.: Weaving a web of linked resources. Semantic Web 8(6)
(2017) 767–772

[103] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A Nucleus
for a Web of Open Data. In: 6th International and 2nd Asian Semantic Web Conference
(ISWC2007+ASWC2007), Berlin, Heidelberg, Springer-Verlag (2007)

[104] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge. In: 16th
international World Wide Web conference (WWW 2007), New York, NY, USA, ACM Press
(2007)

[105] Nastase, V., Strube, M., Börschinger, B., Zirn, C., Elghafari, A.: Wikinet: A very large
scale multi-lingual concept network. In: LREC. (2010)

[106] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively
created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, AcM (2008) 1247–1250

[107] Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM 57(10) (2014) 78–85

[108] Fellbaum, C.: WordNet : An Electronic Lexical Database. The MIT Press, Cambridge, MA
(1998)

168

[109] Ruppenhofer, J., Ellsworth, M., Petruck, M.R., Johnson, C.R., Scheffczyk, J.: FrameNet II:
Extended theory and practice. Institut für Deutsche Sprache, Bibliothek (2016)

[110] Schuler, K.K.: Verbnet: A broad-coverage, comprehensive verb lexicon. (2005)

[111] Navigli, R., Ponzetto, S.P.: Babelnet: The automatic construction, evaluation and appli-
cation of a wide-coverage multilingual semantic network. Artificial Intelligence 193 (2012)
217–250

[112] Lenat, D.B.: Cyc: A large-scale investment in knowledge infrastructure. Communications
of the ACM 38(11) (1995) 33–38

[113] Speer, R., Havasi, C.: Representing General Relational Knowledge in ConceptNet 5. In:
Proceedings of the Eight International Conference on Language Resources and Evaluation
(LREC’12), Istanbul, Turkey (2012)

[114] Weikum, G., Theobald, M.: From information to knowledge: harvesting entities and rela-
tionships from web sources. In: Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems of data. PODS ’10, New York, NY,
USA, ACM (2010) 65–76

[115] Clark, A., Fox, C., Lappin, S.: The handbook of computational linguistics and natural
language processing. John Wiley & Sons (2013)

[116] Moens, M.F.: Information extraction: algorithms and prospects in a retrieval context.
Volume 21. Springer Science & Business Media (2006)

[117] Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M., Etzioni, O.: Open information
extraction from the web. In: IJCAI. Volume 7. (2007) 2670–2676

[118] Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction.
In: Proceedings of the conference on empirical methods in natural language processing,
Association for Computational Linguistics (2011) 1535–1545

[119] Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson, A.,
Dalvi, B., Gardner, M., Kisiel, B., et al.: Never-ending learning. Communications of the
ACM 61(5) (2018) 103–115

[120] Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings
of the 14th conference on Computational linguistics - Volume 2. COLING ’92, Stroudsburg,
PA, USA (1992)

[121] Snow, R., Jurafsky, D., Ng, A.Y.: Semantic taxonomy induction from heterogenous evidence.
In: Proceedings of the 21st International Conference on Computational Linguistics and
the 44th annual meeting of the Association for Computational Linguistics, Association for
Computational Linguistics (2006) 801–808

[122] Gupta, A., Piccinno, F., Kozhevnikov, M., Pasca, M., Pighin, D.: Revisiting taxonomy
induction over wikipedia. In: Proceedings of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Papers, Osaka, Japan, December 11-17 2016.
Number EPFL-CONF-227401 (2016) 2300–2309

[123] Camacho-Collados, J.: Why we have switched from building full-fledged taxonomies to
simply detecting hypernymy relations. arXiv preprint arXiv:1703.04178 (2017)

[124] Group, O.M.: Introduction to omg’s unified modeling language (2016)

[125] Kühne, T.: What is a model? In: Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-
Zentrum für Informatik (2005)

169

[126] da Silva, A.R.: Model-driven engineering: A survey supported by the unified conceptual
model. Computer Languages, Systems & Structures 43 (2015) 139–155

[127] Muller, P.A., Fondement, F., Baudry, B., Combemale, B.: Modeling modeling modeling.
Software & Systems Modeling 11(3) (2012) 347–359

[128] Stachowiak, H.: {Allgemeine Modelltheorie}. (1973)

[129] Liddle, S.W.: Model-driven software development. In: Handbook of Conceptual Modeling.
Springer (2011) 17–54

[130] Jouault, F., Bézivin, J., Kurtev, I.: Tcs:: a dsl for the specification of textual concrete
syntaxes in model engineering. In: Proceedings of the 5th international conference on Gen-
erative programming and component engineering, ACM (2006) 249–254

[131] Brown, A.W., Conallen, J., Tropeano, D.: Introduction: Models, modeling, and model-
driven architecture (mda). In: Model-Driven Software Development. Springer (2005) 1–16

[132] Rodriguez-Priego, E., Garćıa-Izquierdo, F., Rubio, Á.: Modeling issues: a survival guide for
a non-expert modeler. Model driven engineering languages and systems (2010) 361–375

[133] Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Architecture and Ontology Develop-
ment. Springer-Verlag New York, Inc. (2006)

[134] Bézivin, J.: In search of a basic principle for model driven engineering. Novatica Journal,
Special Issue 5(2) (2004) 21–24

[135] Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: International Con-
ference on the Unified Modeling Language, Springer (2001) 19–33

[136] Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering. J. Syst.
Softw. 84 (February 2011) 301–313

[137] Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, meta-models, and the model-driven
paradigm. In: Ontologies for software engineering and software technology. Springer (2006)
249–273

[138] Object Management Group (OMG): Meta Object Facility (MOF) Core Specification. OMG
Document Number formal/2016-11-01 (http://www.omg.org/spec/MOF/2.5.1/) (2016)

[139] Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd Workshop
in Software Model Engineering, WiSME. (2004) 262–271

[140] Favre, J.M.: Foundations of meta-pyramids: Languages vs. metamodels–episode ii: Story of
thotus the baboon1. In: Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2005)

[141] Atkinson, C., Kühne, T.: Profiles in a strict metamodeling framework. Science of Computer
Programming 44(1) (2002) 5–22

[142] Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Engineering and Ontology Develop-
ment. 2nd edn. Springer Publishing Company, Incorporated (2009)

[143] Gronback, R.C.: Eclipse modeling project: a domain-specific language (DSL) toolkit. Pear-
son Education (2009)

[144] Jacobson, I., Rumbaugh, J., Booch, G.: The unified modeling language user guide. Addison
Wesley (1999)

[145] Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5(4) (2006)
369–385

170

http://www.omg.org/spec/MOF/2.5.1/

[146] Karagiannis, D., Kühn, H.: Metamodelling platforms. In: EC-Web. Volume 2455. (2002)
182

[147] Selic, B.: The theory and practice of modeling language design for model-based software
engineering—a personal perspective. In: Generative and Transformational Techniques in
Software Engineering III. Springer (2011) 290–321

[148] Atkinson, C., Kühne, T.: Model-Driven Development: A Metamodeling Foundation. IEEE
Softw. 20 (September 2003) 36–41

[149] Seidewitz, E.: What models mean. IEEE software 20(5) (2003) 26–32

[150] Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of ”semantics”? Com-
puter 37(10) (2004) 64–72

[151] Oestereich, B., Bremer, S.: Analyse und Design mit der UML 2.5: objektorientierte Soft-
wareentwicklung. Oldenbourg verlag (2012)

[152] Object Management Group (OMG): Unified Modeling Language (OMG UML). OMG
Document Number formal/2015-03-01 (http://www.omg.org/spec/UML/2.5) (2015)

[153] Harsu, M.: A survey on domain engineering. Tampere University of Technology (2002)

[154] Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE software
19(4) (2002) 58–65

[155] Embley, D.W., Thalheim, B.: Handbook of Conceptual Modeling. Springer (2014)

[156] Wieringa, R.: Real-world semantics of conceptual models. In: The evolution of conceptual
modeling. Springer (2011) 1–20

[157] Vallecillo, A.: On the combination of domain specific modeling languages. In: European
Conference on Modelling Foundations and Applications, Springer (2010) 305–320

[158] Strembeck, M., Zdun, U.: An approach for the systematic development of domain-specific
languages. Software: Practice and Experience 39(15) (2009) 1253–1292

[159] Kleppe, A.: A language description is more than a metamodel. In: Fourth International
Workshop on Software Language Engineering, Nashville, USA. (2007) 1–9

[160] Object Management Group (OMG): MDA Guide rev. 2.0. OMG Document Number
ormsc/2014-06-01 (http://www.omg.org/cgi-bin/doc?ormsc/14-06-01) (2014)

[161] Miller, J. and Mukerji, J.: MDA Guide Ver-
sion 1.0.1. OMG Document Number omg/2003-06-01
(http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf)
(2003)

[162] Omg, Q.: Meta object facility (mof) 2.0 query/view/transformation specification. Final
Adopted Specification (November 2005) (2008)

[163] Schreiber, A.T., Schreiber, G., Akkermans, H., Anjewierden, A., Shadbolt, N., de Hoog, R.,
Van de Velde, W., Shadbolt, N.R., Wielinga, B.: Knowledge engineering and management:
the CommonKADS methodology. MIT press (2000)

[164] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific american 284(5)
(2001) 34–43

[165] Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies. CRC
press (2009)

171

http://www.omg.org/spec/UML/2.5
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf

[166] Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods.
Data & knowledge engineering 25(1) (1998) 161–197

[167] Staab, S., Studer, R.: Handbook on ontologies. Springer Science & Business Media (2013)

[168] Pellegrini, T., Blumauer, A.: Semantic web. Wege zur vernetzten Wissensgesellschaft. Berlin
[ua] Springer (2006)

[169] Sowa, J.F.: Principles of semantic networks: Explorations in the representation of knowl-
edge. Morgan Kaufmann (1991)

[170] Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Handbook on ontologies.
Springer (2009) 1–17

[171] Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge
acquisition 5(2) (1993) 199–220

[172] Genesereth, M.R., Nilsson, N.J.: Logical foundations of artificial. Intelligence. Morgan
Kaufmann 58 (1987)

[173] van Harmelen, F., Patel-Schneider, P.F., Horrocks, I.: Reference description of the daml+
oil ontology markup language. Contributors: T. Berners-Lee, D. Brickley, D. Connolly, M.
Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D. McGuinness, LA Stein (2001)

[174] Yu, L.: A developer’s guide to the semantic Web. Springer Science & Business Media (2011)

[175] Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Malaysia; Pearson
Education Limited, (2016)

[176] Hogan, A.: Linked data & the semantic web standards. (2014)

[177] Berners-Lee, T.: Design issues: Linked data (2006). URL
http://www.w3.org/DesignIssues/LinkedData.html (2006)

[178] Berrueta, D., Phipps, J., Miles, A., Baker, T., Swick, R.: Best practice recipes for publishing
rdf vocabularies. Working draft, W3C (2008)

[179] Masood, A., Hashmi, A.: Text analytics: The dark data frontier. In: Cognitive Computing
Recipes. Springer (2019) 189–224

[180] Indurkhya, N., Damerau, F.J.: Handbook of natural language processing. Volume 2. CRC
Press (2010)

[181] Schütze, H., Manning, C.D., Raghavan, P.: Introduction to information retrieval. Volume 39.
Cambridge University Press (2008)

[182] Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a Large Annotated Corpus of
English: The Penn Treebank. Computational Linguistics 19(2) (June 1993) 313–330

[183] Petrov, S., Das, D., McDonald, R.: A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086 (2011)

[184] Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-Rich Part-of-Speech Tagging
with a Cyclic Dependency Network. In: Proceedings of the NAACL ’03, Stroudsburg, PA,
USA, Association for Computational Linguistics (2003) 173–180

[185] Jurafsky, D., Martin, J.: Speech and language processing: an introduction to natural
language processing, computational linguistics, and speech recognition. Prentice Hall series
in artificial intelligence. Prentice Hall (2000)

172

[186] Grineva, M., Grinev, M., Lizorkin, D.: Extracting key terms from noisy and multitheme
documents. In: Proceedings of the 18th international conference on World wide web. WWW
’09, New York, NY, USA, ACM (2009) 661–670

[187] Salton, G., Yang, C.S.: On the specification of term values in automatic indexing. Journal
of documentation 29(4) (1973) 351–372

[188] Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Proceedings of the 2004
conference on empirical methods in natural language processing. (2004)

[189] Evert, S.: The statistics of word cooccurrences: word pairs and collocations. (2005)

[190] Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. Volume
999. MIT Press (1999)

[191] Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into informa-
tion extraction systems by gibbs sampling. In: Proceedings of the 43rd annual meeting on
association for computational linguistics, Association for Computational Linguistics (2005)
363–370

[192] Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures
for named entity recognition. arXiv preprint arXiv:1603.01360 (2016)

[193] Danilevsky, M., Li, Y., Reiss, F., Zhu, H., et al.: Systemt: Declarative text understanding
for enterprise. In: Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 3
(Industry Papers). Volume 3. (2018) 76–83

[194] Clark, K., Manning, C.D.: Improving coreference resolution by learning entity-level dis-
tributed representations. arXiv preprint arXiv:1606.01323 (2016)

[195] Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: An annotated corpus of
semantic roles. Computational linguistics 31(1) (2005) 71–106

[196] Chiticariu, L., Li, Y., Reiss, F.R.: Rule-based information extraction is dead! long live rule-
based information extraction systems! In: Proceedings of the 2013 conference on empirical
methods in natural language processing. (2013) 827–832

[197] Roller, S., Kiela, D., Nickel, M.: Hearst patterns revisited: Automatic hypernym detection
from large text corpora. arXiv preprint arXiv:1806.03191 (2018)

[198] Pawar, S., Palshikar, G.K., Bhattacharyya, P.: Relation extraction: A survey. arXiv preprint
arXiv:1712.05191 (2017)

[199] Jiang, J., Zhai, C.: A systematic exploration of the feature space for relation extraction.
In: Human Language Technologies 2007: The Conference of the North American Chapter of
the Association for Computational Linguistics; Proceedings of the Main Conference. (2007)
113–120

[200] Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections.
In: Proceedings of the fifth ACM conference on Digital libraries, ACM (2000) 85–94

[201] Xu, F., Uszkoreit, H., Krause, S., Li, H.: Boosting relation extraction with limited closed-
world knowledge. In: Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, Association for Computational Linguistics (2010) 1354–1362

[202] Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction
without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP: Volume 2-Volume 2, Association for Computational Linguistics (2009) 1003–
1011

173

[203] Min, B., Grishman, R., Wan, L., Wang, C., Gondek, D.: Distant supervision for relation
extraction with an incomplete knowledge base. In: Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. (2013) 777–782

[204] Hasegawa, T., Sekine, S., Grishman, R.: Discovering relations among named entities from
large corpora. In: Proceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, Association for Computational Linguistics (2004) 415

[205] Akbik, A., Visengeriyeva, L., Herger, P., Hemsen, H., Löser, A.: Unsupervised discovery of
relations and discriminative extraction patterns. Proceedings of COLING 2012 (2012) 17–32

[206] Mausam, M.: Open information extraction systems and downstream applications. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
AAAI Press (2016) 4074–4077

[207] Lenci, A.: Distributional semantics in linguistic and cognitive research. Italian journal of
linguistics 20(1) (2008) 1–31

[208] Harris, Z.S.: Distributional structure. Word 10(2-3) (1954) 146–162

[209] Firth, J.: A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis (1957)
1–32

[210] Hindle, D.: Noun classification from predicate-argument structures. In: Proceedings of the
28th annual meeting on Association for Computational Linguistics, Association for Compu-
tational Linguistics (1990) 268–275

[211] Turney, P.D., Pantel, P.: From frequency to meaning: vector space models of semantics. J.
Artif. Int. Res. 37(1) (January 2010) 141–188

[212] Potts, C.: Distributional approaches to word meanings (2013)

[213] Lenci, A.: Distributional models of word meaning. Annual review of Linguistics 4 (2018)
151–171

[214] Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781 (2013)

[215] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in neural information processing
systems. (2013) 3111–3119

[216] Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model.
Journal of machine learning research 3(Feb) (2003) 1137–1155

[217] Bakarov, A.: A survey of word embeddings evaluation methods. arXiv preprint
arXiv:1801.09536 (2018)

[218] Mandera, P., Keuleers, E., Brysbaert, M.: Explaining human performance in psycholinguis-
tic tasks with models of semantic similarity based on prediction and counting: A review and
empirical validation. Journal of Memory and Language 92 (2017) 57–78

[219] Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey.
Knowledge-based systems 46 (2013) 109–132

[220] Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge &
Data Engineering (6) (2005) 734–749

174

[221] Lops, P., De Gemmis, M., Semeraro, G.: Content-based recommender systems: State of the
art and trends. In: Recommender systems handbook. Springer (2011) 73–105

[222] Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recommender
systems. In: AAAI spring symposium: linked data meets artificial intelligence. Volume
2010. (2010)

[223] Figueroa, C., Vagliano, I., Rocha, O.R., Morisio, M.: A systematic literature review of linked
data-based recommender systems. Concurrency and Computation: Practice and Experience
27(17) (2015) 4659–4684

[224] de Gemmis, M., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Semantics-aware content-
based recommender systems. In: Recommender Systems Handbook. Springer (2015) 119–159

[225] Di Noia, T., Ostuni, V.C.: Recommender systems and linked open data. In: Reasoning
Web International Summer School, Springer (2015) 88–113

[226] Tietz, T., Jäger, J., Waitelonis, J., Sack, H.: Semantic annotation and information visual-
ization for blogposts with refer. In: VOILA@ ISWC. (2016) 28–40

[227] Robillard, M., Walker, R., Zimmermann, T.: Recommendation systems for software engi-
neering. IEEE software 27(4) (2010) 80–86

[228] Bruch, M., Monperrus, M., Mezini, M.: Learning from examples to improve code completion
systems. In: Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering,
ACM (2009) 213–222

[229] Holmes, R., Walker, R.J., Murphy, G.C.: Approximate structural context matching: An
approach to recommend relevant examples. IEEE Transactions on Software Engineering (12)
(2006) 952–970

[230] Cubranic, D., Murphy, G.C., Singer, J., Booth, K.S.: Hipikat: A project memory for
software development. IEEE Transactions on Software Engineering 31(6) (2005) 446–465

[231] Ye, Y., Fischer, G.: Reuse-conducive development environments. Automated Software
Engineering 12(2) (2005) 199–235

[232] Sen, S., Baudry, B., Vangheluwe, H.: Domain-specific model editors with model completion.
In: International Conference on Model Driven Engineering Languages and Systems, Springer
(2007) 259–270

[233] Hessellund, A., Czarnecki, K., Wasowski, A.: Guided development with multiple domain-
specific languages. In: International Conference on Model Driven Engineering Languages
and Systems, Springer (2007) 46–60

[234] Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Model repositories:
Will they become reality? In: CloudMDE MoDELS. (2015) 37–42

[235] Nalepa, G.J., Baumeister, J.: Synergies Between Knowledge Engineering and Software
Engineering. Springer (2018)

[236] Kühne, T.: Unifying explanatory and constructive modeling: towards removing the gulf
between ontologies and conceptual models. In: Proceedings of the ACM/IEEE 19th In-
ternational Conference on Model Driven Engineering Languages and Systems, ACM (2016)
95–102

175

[237] Henderson-Sellers, B., Gonzalez-Perez, C., Eriksson, O., Ågerfalk, P.J., Walkerden, G.: Soft-
ware modelling languages: A wish list. In: 7th IEEE/ACM International Workshop on
Modeling in Software Engineering, MiSE 2015, Florence, Italy, May 16-17, 2015. (2015)
72–77

[238] Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT, Centre for
Telematics and Information Technology (2005)

[239] Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.: Towards ontological foun-
dations for conceptual modeling: the unified foundational ontology (ufo) story. Applied
ontology 10(3-4) (2015) 259–271

[240] Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi, G.: Multi-level ontology-based
conceptual modeling. Data & Knowledge Engineering 109 (2017) 3–24

[241] Tairas, R., Mernik, M., Gray, J.: Using ontologies in the domain analysis of domain-
specific languages. In: International Conference on Model Driven Engineering Languages
and Systems, Springer (2008) 332–342

[242] Thonggoom, O., Song, I.Y., An, Y.: Semi-automatic conceptual data modeling using entity
and relationship instance repositories. In: Proceedings of the 30th international conference
on Conceptual modeling. ER’11, Berlin, Heidelberg, Springer-Verlag (2011) 219–232

[243] Gomes, P., Gandola, P., Cordeiro, J.: Helping software engineers reusing uml class diagrams.
In: Proceedings of the 7th international conference on Case-Based Reasoning. ICCBR ’07,
Berlin, Heidelberg, Springer-Verlag (2007) 449–462

[244] Walter, T., Parreiras, F.S., Staab, S.: An ontology-based framework for domain-specific
modeling. Software and Systems Modeling (2014) 1–26

[245] Ojamaa, A., Haav, H.M., Penjam, J.: Semi-automated generation of dsl meta models from
formal domain ontologies. In: Model and Data Engineering. Springer (2015) 3–15

[246] Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use
conceptual modeling in practice? Data & Knowledge Engineering 58(3) (2006) 358–380

[247] Halpin, T.: Object-role modeling (orm/niam). In: Handbook on architectures of information
systems. Springer (1998) 81–103

[248] Schreiber, G., Wielinga, B.J., Akkermans, H., Velde, W.V.d., Anjewierden, A.: Cml: The
commonkads conceptual modelling language. In: Proceedings of the 8th European Knowl-
edge Acquisition Workshop on A Future for Knowledge Acquisition. EKAW ’94, London,
UK, UK, Springer-Verlag (1994) 1–25

[249] Atkinson, C., Kühne, T.: In defence of deep modelling. Information & Software Technology
64 (2015) 36–51

[250] Langer, P., Mayerhofer, T., Wimmer, M., Kappel, G.: On the usage of uml: Initial results
of analyzing open uml models. In: Modellierung. Volume 19. (2014) 21

[251] Atkinson, C., Kiko, K.: A detailed comparison of uml and owl. (2008)

[252] Landhäußer, M., Körner, S.J., Tichy, W.F.: Synchronizing domain models with natural
language specifications. In: Proceedings of the First International Workshop on Realizing
AI Synergies in Software Engineering. RAISE ’12, Piscataway, NJ, USA, IEEE Press (2012)
22–26

[253] Chen, P.P.: English sentence structure and entity-relationship diagrams. Inf. Sci. 29(2-3)
(1983) 127–149

176

[254] Storey, V.C.: Understanding semantic relationships. The VLDB Journal 2(4) (1993) 455–
488

[255] Maroto Garćıa, N., Alcina, A.: Formal description of conceptual relationships with a view
to implementing them in the ontology editor protégé. Terminology. International Journal of
Theoretical and Applied Issues in Specialized Communication 15(2) (2009) 232–257

[256] Chaffin, R., Herrmann, D.J.: The similarity and diversity of semantic relations. Memory &
Cognition 12(2) (1984) 134–141

[257] Miller, G.A.: Wordnet: A lexical database for english. Commun. ACM 38(11) (November
1995) 39–41

[258] Olivé, A.: Conceptual Modeling of Information Systems. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (2007)

[259] (OMG), O.M.G.: Ontology definition metamodel (odm). version 1.1. (2014)

[260] Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A.: Ontology engineering in
a networked world. Springer Science & Business Media (2012)

[261] Brickley, D., Guha, R.V.: Rdf schema 1.1. W3C Recommendation 25 (2014)

[262] Almeida, M., Souza, R., Fonseca, F.: Semantics in the semantic web: a critical evaluation.
Knowledge organization 38(3) (2011) 187–203

[263] Huang, C.r.: Ontology and the lexicon: a natural language processing perspective. Cam-
bridge University Press (2010)

[264] Van Assem, M., Menken, M.R., Schreiber, G., Wielemaker, J., Wielinga, B.: A method for
converting thesauri to rdf/owl. In: The Semantic Web–ISWC 2004. Springer (2004) 17–31

[265] Miles, A., Bechhofer, S.: Skos simple knowledge organization system reference. W3C rec-
ommendation 18 (2009) W3C

[266] Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations. Cognitive
science 11(4) (1987) 417–444

[267] Aitchison, J., Gilchrist, A., Bawden, D.: Thesaurus construction and use: a practical
manual. Psychology Press (2000)

[268] Zesch, T.: Study of semantic relatedness of words using collaboratively constructed semantic
resources. PhD thesis, TU Darmstadt (2010)

[269] Pomikálek, J., Jakub́ıcek, M., Rychlỳ, P.: Building a 70 billion word corpus of english from
clueweb. In: LREC. (2012) 502–506

[270] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The
stanford corenlp natural language processing toolkit. In: ACL (System Demonstrations).
(2014) 55–60

[271] Popescu, A.M.: Information extraction from unstructured web text. PhD thesis (2007)

[272] Banko, M.: Open Information Extraction for the Web. PhD thesis, University of Washington
(2009)

[273] Bhagat, R., Hovy, E., Patwardhan, S.: Acquiring paraphrases from text corpora. In:
Proceedings of the fifth international conference on Knowledge capture, ACM (2009) 161–
168

177

[274] Leigh, H.: The patient: Biological, psychological, and social dimensions of medical practice.
Springer Science & Business Media (1980)

[275] Brown, K.: Encyclopedia of language and linguistics. (2006)

[276] Baroni, M., Lenci, A.: Distributional memory: A general framework for corpus-based
semantics. Computational Linguistics 36(4) (2010) 673–721

[277] Turney, P.D.: Distributional semantics beyond words: Supervised learning of analogy and
paraphrase. arXiv preprint arXiv:1310.5042 (2013)

[278] Kiela, D., Clark, S.: Detecting compositionality of multi-word expressions using nearest
neighbours in vector space models. In: EMNLP. (2013) 1427–1432

[279] Ramisch, C.: Multiword Expressions Acquisition. Springer (2014)

[280] Lin, D., Church, K.W., Ji, H., Sekine, S., Yarowsky, D., Bergsma, S., Patil, K., Pitler, E.,
Lathbury, R., Rao, V., et al.: New tools for web-scale n-grams. In: LREC. (2010)

[281] Lin, Y., Michel, J.B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic an-
notations for the google books ngram corpus. In: Proceedings of the ACL 2012 system
demonstrations, Association for Computational Linguistics (2012) 169–174

[282] Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and an algo-
rithm for identification in text. Natural language engineering 1(01) (1995) 9–27

[283] Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M., Schler, Y., Zamir,
O.: Text mining at the term level. In: Principles of Data Mining and Knowledge Discovery.
Springer (1998) 65–73

[284] Williams, S.: An analysis of pos tag patterns in ontology identifiers and labels. Technical
report, Technical Report TR2013/02, Department of Computing, The Open University, UK
(2013)

[285] Nakashole, N., Weikum, G., Suchanek, F.: Patty: a taxonomy of relational patterns with
semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, Association
for Computational Linguistics (2012) 1135–1145

[286] Hitzler, P., Krötzsch, M., Rudolph, S., Sure, Y.: Semantic Web: Grundlagen. Springer-
Verlag (2007)

[287] Group, W.O.W., et al.: {OWL} 2 web ontology language document overview. (2009)

[288] Cyganiak, R., Wood, D., Lanthaler, M.: Rdf 1.1 concepts and abstract syntax. W3C
Recommendation. Feb (2014)

[289] Vatant, B., Wick, M.: Geonames ontology (2012)

[290] Prud’Hommeaux, E., Seaborne, A., et al.: Sparql query language for rdf. W3C recommen-
dation 15 (2008)

[291] Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Interna-
tional journal of human-computer studies 43(5) (1995) 625–640

[292] Guarino, N.: Formal ontology in information systems: Proceedings of the first international
conference (FOIS’98), June 6-8, Trento, Italy. Volume 46. IOS press (1998)

[293] Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: A look back and into
the future. ACM Computing Surveys (CSUR) 44(4) (2012) 20

178

[294] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
Dbpedia-a crystallization point for the web of data. Web Semantics: science, services and
agents on the world wide web 7(3) (2009) 154–165

[295] Hepp, M.: Possible ontologies: How reality constrains the development of relevant ontologies.
Internet Computing, IEEE 11(1) (2007) 90–96

[296] Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the international
conference on Formal Ontology in Information Systems - Volume 2001. FOIS ’01, New York,
NY, USA, ACM (2001)

[297] McCrae, J., Aguado-de Cea, G., Buitelaar, P., Cimiano, P., Declerck, T., Gómez-Pérez,
A., Gracia, J., Hollink, L., Montiel-Ponsoda, E., Spohr, D., et al.: Interchanging lexical
resources on the semantic web. Language Resources and Evaluation 46(4) (2012) 701–719

[298] Chiarcos, C., McCrae, J., Cimiano, P., Fellbaum, C.: Towards open data for linguistics:
Linguistic linked data. In: New Trends of Research in Ontologies and Lexical Resources.
Springer (2013) 7–25

[299] McCrae, J., Fellbaum, C., Cimiano, P.: Publishing and linking wordnet using lemon and
rdf. In: Proceedings of the 3rd Workshop on Linked Data in Linguistics. (2014)

[300] Siemoneit, B., McCrae, J.P., Cimiano, P.: Linking four heterogeneous language resources
as linked data. ACL-IJCNLP 2015 (2015) 59

[301] Roget, P.M.: Roget’s Thesaurus of English Words and Phrases... TY Crowell Company
(1911)

[302] Summers, E., Isaac, A., Redding, C., Krech, D.: Lcsh, skos and linked data. Universitätsver-
lag Göttingen (2008) 25

[303] Caracciolo, C., Stellato, A., Morshed, A., Johannsen, G., Rajbhandari, S., Jaques, Y.,
Keizer, J.: The agrovoc linked dataset. Semantic Web 4(3) (2013) 341–348

[304] Labra Gayo, J.E., McCrae, J.P., Windhouwer, M., de Melo, G.: Lexvo. org: Language-
related information for the linguistic linked data cloud. Semantic Web 6(4) (2015) 393–400

[305] Manaf, N.A.A., Bechhofer, S., Stevens, R.: The current state of skos vocabularies on the
web. In: The Semantic Web: Research and Applications. Springer (2012) 270–284

[306] McCrae, J.P., Chiarcos, C., Bond, F., Cimiano, P., Declerck, T., de Melo, G., Gracia, J.,
Hellmann, S., Klimek, B., Moran, S., et al.: The open linguistics working group: Developing
the linguistic linked open data cloud

[307] Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE
Transactions on knowledge and data engineering 25(1) (2013) 158–176

[308] Hasan, K.S., Ng, V.: Automatic keyphrase extraction: A survey of the state of the art. In:
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Volume 1. (2014) 1262–1273

[309] Beliga, S., Meštrović, A., Martinčić-Ipšić, S.: An overview of graph-based keyword extraction
methods and approaches. Journal of information and organizational sciences 39(1) (2015)
1–20

[310] Tandon, N., de Melo, G., Weikum, G.: Deriving a Web-Scale Common Sense Fact Database.
In: AAAI. (2011)

179

[311] Nulty, P., Costello, F.: Using lexical patterns in the Google Web 1T corpus to deduce se-
mantic relations between nouns. In: Proceedings of the Workshop on Semantic Evaluations.
DEW ’09, Stroudsburg, PA, USA (2009) 58–63

[312] Lin, D., Church, K., Ji, H., Sekine, S., Yarowsky, D., Bergsma, S., Patil, K., Pitler, E.,
Lathbury, R., Rao, V., et al.: Unsupervised acquisition of lexical knowledge from n-grams:
Final report of the 2009 jhu clsp workshop. In: Proceedings of Workshop at the Center for
Language and Speech Processing at Johns Hopkins University in. Volume 2010. (2009) 89

[313] Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based
explicit semantic analysis. In: Proceedings of the 20th international joint conference on
Artifical intelligence. IJCAI’07, San Francisco, CA, USA (2007)

[314] Zesch, T.: Study of Semantic Relatedness of Words Using Collaboratively Constructed
Semantic Resources. PhD thesis, TU Darmstadt (Februar 2010)

[315] Zhang, Z., Gentile, A.L., Ciravegna, F.: Recent advances in methods of lexical semantic
relatedness–a survey. Natural Language Engineering 19(4) (2013) 411–479

[316] Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP). (2014) 1532–1543

[317] Levy, O., Goldberg, Y.: Dependency-based word embeddings. In: Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
Volume 2. (2014) 302–308

[318] Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-training
distributed word representations. In: Proceedings of the International Conference on Lan-
guage Resources and Evaluation (LREC 2018). (2018)

[319] MacAvaney, S., Zeldes, A.: A deeper look into dependency-based word embeddings. arXiv
preprint arXiv:1804.05972 (2018)

[320] Agt-Rickauer, H., Kutsche, R.D., Sack, H.: Domore – a recommender system for domain
modeling. In: Proceedings of the 6th International Conference on Model-Driven Engineering
and Software Development - Volume 1: MODELSWARD, INSTICC, SciTePress (2018) 71–
82

[321] Frantzi, K., Ananiadou, S., Mima, H.: Automatic recognition of multi-word terms:. the
c-value/nc-value method. International Journal on Digital Libraries 3(2) (2000) 115–130

[322] Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., Team, T.G.B., Pickett, J.P.,
Hoiberg, D., Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak, M.A., Aiden, E.L.:
Quantitative Analysis of Culture Using Millions of Digitized Books. Science 331(6014)
(January 2011) 176–182

[323] Goldberg, Y., Orwant, J.: A dataset of syntactic-ngrams over time from a very large corpus
of english books. (2013)

[324] Harris, Z.: Distributional structure. Word 10(23) (1954) 146–162

[325] Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography.
Computational linguistics 16(1) (1990) 22–29

[326] Pibiri, G.E., Venturini, R.: Efficient data structures for massive n-gram datasets. In:
Proceedings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, ACM (2017) 615–624

180

[327] Euzenat, J., Shvaiko, P.: Ontology Matching, Second Edition. Springer (2013)

[328] Algergawy, A., Cheatham, M., Faria, D., Ferrara, A., Fundulaki, I., Harrow, I., Hertling, S.,
Jiménez-Ruiz, E., Karam, N., Khiat, A., et al.: Results of the ontology alignment evaluation
initiative 2018. In: CEUR Workshop Proceedings. Volume 2288., RWTH (2018) 76–116

[329] Faria, D., Pesquita, C., Balasubramani, B.S., Tervo, T., Carriço, D., Garrilha, R., Couto,
F.M., Cruz, I.F.: Results of aml participation in oaei 2018. In: Ontology Matching: OM-
2018: Proceedings of the ISWC Workshop. (2018) 125

[330] Otero-Cerdeira, L., Rodŕıguez-Mart́ınez, F.J., Gómez-Rodŕıguez, A.: Ontology matching:
A literature review. Expert Systems with Applications 42(2) (2015) 949–971

[331] Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: Probabilistic alignment of relations,
instances, and schema. Proceedings of the VLDB Endowment 5(3) (2011) 157–168

[332] Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like rdf reification?: making statements about
statements using singleton property. In: Proceedings of the 23rd international conference
on World wide web, ACM (2014) 759–770

[333] Rouces, J., de Melo, G., Hose, K.: Framebase: Enabling integration of heterogeneous
knowledge. Semantic Web 8(6) (2017) 817–850

[334] Rouces, J., de Melo, G., Hose, K.: Heuristics for connecting heterogeneous knowledge via
framebase. In: European Semantic Web Conference, Springer (2016) 20–35

[335] Bayerl, S., Granitzer, M.: Linked data warehousing. In: Linked Enterprise Data. Springer
(2014) 177–192

[336] Leser, U.: Query planning in mediator based information systems. (2000)

[337] Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In: European
semantic web conference, Springer (2008) 524–538

[338] Saleem, M., Khan, Y., Hasnain, A., Ermilov, I., Ngonga Ngomo, A.C.: A fine-grained
evaluation of sparql endpoint federation systems. Semantic Web 7(5) (2016) 493–518

[339] Wylot, M., Hauswirth, M., Cudré-Mauroux, P., Sakr, S.: Rdf data storage and query
processing schemes: A survey. ACM Computing Surveys (CSUR) 51(4) (2018) 84

[340] Hartig, O.: Querying a web of linked data: foundations and query execution. Volume 24.
Ios Press (2016)

[341] McCrae, J., Spohr, D., Cimiano, P.: Linking lexical resources and ontologies on the semantic
web with lemon. In: Extended Semantic Web Conference, Springer (2011) 245–259

[342] McCrae, J., Aguado-de Cea, G., Buitelaar, P., Cimiano, P., Declerck, T., Gómez Pérez, A.,
Gracia, J., Hollink, L., Montiel-Ponsoda, E., Spohr, D., et al.: The lemon cookbook. Online.
Google Scholar (2010)

[343] Grassi, M., Piazza, F.: Towards an rdf encoding of conceptnet. In: International Symposium
on Neural Networks, Springer (2011) 558–565

[344] Najmi, E., Malik, Z., Hashmi, K., Rezgui, A.: Conceptrdf: An rdf presentation of con-
ceptnet knowledge base. In: Information and Communication Systems (ICICS), 2016 7th
International Conference on, IEEE (2016) 145–150

[345] Chen, H., Trouve, A., Murakami, K.J., Fukuda, A.: A concise conversion model for improv-
ing the rdf expression of conceptnet knowledge base. In: Artificial Intelligence and Robotics.
Springer (2018) 213–221

181

[346] Leser, U., Naumann, F.: Informationsintegration: Architekturen und Methoden zur Inte-
gration verteilter und heterogener Datenquellen. dpunkt Verlag (2012)

[347] Wiederhold, G.: Mediators in the architecture of future information systems. Computer
25(3) (1992) 38–49

[348] Ehrmann, M., Cecconi, F., Vannella, D., Mccrae, J.P., Cimiano, P., Navigli, R.: Represent-
ing multilingual data as linked data: the case of babelnet 2.0. In: LREC. (2014) 401–408

[349] Sérasset, G.: Dbnary: Wiktionary as a lemon-based multilingual lexical resource in rdf.
Semantic Web 6(4) (2015) 355–361

[350] Eckle-Kohler, J., McCrae, J.P., Chiarcos, C.: Lemonuby–a large, interlinked, syntactically-
rich lexical resource for ontologies. Semantic Web 6(4) (2015) 371–378

[351] Suominen, O., Mader, C.: Assessing and improving the quality of skos vocabularies. Journal
on Data Semantics 3(1) (2014) 47–73

[352] Fafalios, P., Tzitzikas, Y.: Sparql-ld: a sparql extension for fetching and querying linked
data. In: International Semantic Web Conference (Posters & Demos). (2015)

[353] Fafalios, P., Yannakis, T., Tzitzikas, Y.: Querying the web of data with sparql-ld. In:
International Conference on Theory and Practice of Digital Libraries, Springer (2016) 175–
187

[354] Hebig, R., Quang, T.H., Chaudron, M.R., Robles, G., Fernandez, M.A.: The quest for
open source projects that use uml: mining github. In: Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems, ACM
(2016) 173–183

[355] France, R.B., Bieman, J.M., Mandalaparty, S.P., Cheng, B.H., Jensen, A.: Repository for
model driven development (remodd). In: Software Engineering (ICSE), 2012 34th Interna-
tional Conference on, IEEE (2012) 1471–1472

[356] Lucrédio, D., Fortes, R.P.d.M., Whittle, J.: Moogle: a metamodel-based model search
engine. Software & Systems Modeling 11(2) (2012) 183–208

[357] Kuhn, A.: On recommending meaningful names in source and uml. In: Proceedings of the
2nd International Workshop on Recommendation Systems for Software Engineering, ACM
(2010) 50–51

[358] Ganser, A., Lichter, H., Roth, A., Rumpe, B.: Staged model evolution and proactive quality
guidance for model libraries. Software Quality Journal (2015) 1–34

[359] Ganser, A., Lichter, H.: Engineering model recommender foundations. In: Modelsward 2013,
proceedings of the 1st international conference on model-driven engineering and software
development, Barcelona, Spain. Volume 19. (2013) 135–142

[360] Dyck, A., Ganser, A., Lichter, H.: On designing recommenders for graphical domain mod-
eling environments. In: MODELSWARD. (2014) 291–299

[361] Ganser, A., Lichter, H., Roth, A., Rumpe, B.: Proactive quality guidance for model evolution
in model libraries. In: ME 2013–Models and Evolution Workshop Proceedings. (2013) 50

[362] Elinson, S., Hanns, M., Kirstein, M., Kronseder, S., Köhler, S.: Eclipse model repository
(2010)

[363] Dyck, A., Ganser, A., Lichter, H.: A framework for model recommenders requirements,
architecture and tool support. In: Model-Driven Engineering and Software Development
(MODELSWARD), 2014 2nd International Conference on, IEEE (2014) 282–290

182

[364] Dyck, A., Ganser, A., Lichter, H.: Model recommenders for command-enabled editors.
MDEBE’2013 (2013)

[365] Segura, Á.M., Pescador, A., de Lara, J., Wimmer, M.: An extensible meta-modelling
assistant. In: Enterprise Distributed Object Computing Conference (EDOC), 2016 IEEE
20th International, IEEE (2016) 1–10

[366] Ángel, M.S., de Lara, J., Neubauer, P., Wimmer, M.: Automated modelling assistance by
integrating heterogeneous information sources. Computer Languages, Systems & Structures
53 (2018) 90–120

[367] Milajevs, D., Sadrzadeh, M., Purver, M.: Robust co-occurrence quantification for lexical
distributional semantics. ACL 2016 (2016) 58

[368] Agt, H., Bauhoff, G., Cartsburg, M., Kumpe, D., Kutsche, R., Milanovic, N.: Metamodeling
foundation for software and data integration. In: International United Information Systems
Conference, Springer (2009) 328–339

[369] Agt, H., Bauhoff, G., Widiker, J., Milanovic, N., Kutsche, R.D.: Model-based semantic
conflict analysis for software- and data-integration scenarios. Technical Report 2009/7,
Technische Universität Berlin (2009)

[370] Agt, H., Kutsche, R.D., Natho, N., Li, Y.: The bizware research project. In: Model
Driven Engineering Languages and Systems-Exhibition Track, 15th International Confer-
ence, MODELS. (2012)

[371] Agt, H.: Supporting Software Language Engineering by Automated Domain Knowledge Ac-
quisition. In: MODELS 2011 Workshops. Volume 7167 of LNCS., Wellington, New Zealand,
Springer (2012)

[372] Agt, H., Kutsche, R.D.: Automated construction of a large semantic network of related
terms for domain-specific modeling. In: Advanced Information Systems Engineering, 25th
International Conference, CAiSE 2013, Valencia, Spain, June 17-21, 2013. Volume 7908 of
Lecture Notes in Computer Science (LNCS)., Springer (2013) 610–625

[373] Agt, H.: SemAcom: A System for Modeling with Semantic Autocompletion. In: Model
Driven Engineering Languages and Systems - 15th International Conference, MODELS 2012,
Demo Track, Innsbruck, Austria (2012)

[374] Agt, H., Kutsche, R.D., Wegeler, T.: Guidance for Domain Specific Modeling in Small and
Medium Enterprises. In: SPLASH ’11 Workshops. Proceedings of the compilation of the
co-located workshops on DSM’11, Portland, OR, USA (2011)

[375] Agt-Rickauer, H., Waitelonis, J., Tietz, T., Sack, H.: Data integration for the media value
chain. In: Proceedings of the ISWC 2016 Posters & Demonstrations Track co-located with
15th International Semantic Web Conference (ISWC 2016), Kobe, Japan, October 19, 2016.
(2016)

[376] Agt-Rickauer, H., Hentschel, C., Sack, H.: Semantic annotation and automated extraction
of audio-visual staging patterns in large-scale empirical film studies. In: Proceedings of
the Posters and Demos Track of the 14th International Conference on Semantic Systems
(SEMANTiCS 2018), Vienna, Austria. (2018)

[377] Agt-Rickauer, H., Kutsche, R.D., Sack, H.: Automated recommendation of related model
elements for domain models. Communications in Computer and Information Science. CCIS
991 (2019) 1–25

183

[378] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.:
Rml: A generic language for integrated rdf mappings of heterogeneous data. In: LDOW.
(2014)

[379] Evermann, J., Porres, I.: Doctoral symposium at models 2011. In: Models in Software En-
gineering - Workshops and Symposia at MODELS 2011, Wellington, New Zealand, October
16-21, 2011, Reports and Revised Selected Papers. (2011) 1–3

[380] Filipiak, D., Agt-Rickauer, H., Hentschel, C., Filipowska, A., Sack, H.: Quantitative analysis
of art market using ontologies, named entity recognition and machine learning: A case
study. In: Business Information Systems - 19th International Conference, BIS 2016, Leipzig,
Germany, July, 6-8, 2016, Proceedings. (2016) 79–90

[381] Horridge, M., Gonçalves, R.S., Nyulas, C.I., Musen, M.A.: Webprot\’eg\’e: A cloud-based
ontology editor. arXiv preprint arXiv:1902.08251 (2019)

[382] Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T.: Learning word vectors for
157 languages. arXiv preprint arXiv:1802.06893 (2018)

[383] Ruder, S., Vulić, I., Søgaard, A.: A survey of cross-lingual word embedding models. arXiv
preprint arXiv:1706.04902 (2017)

[384] Marino, J.B., Banchs, R.E., Crego, J.M., de Gispert, A., Lambert, P., Fonollosa, J.A., Costa-
Jussà, M.R.: N-gram-based machine translation. Computational linguistics 32(4) (2006)
527–549

[385] Bordea, G., Lefever, E., Buitelaar, P.: Semeval-2016 task 13: Taxonomy extraction evalua-
tion (texeval-2). In: Proceedings of the 10th International Workshop on Semantic Evaluation
(SemEval-2016). (2016) 1081–1091

[386] Sarkar, R., McCrae, J.P., Buitelaar, P.: A supervised approach to taxonomy extraction using
word embeddings. In: Proceedings of the Eleventh International Conference on Language
Resources and Evaluation (LREC-2018). (2018)

[387] Tandon, N., Varde, A.S., de Melo, G.: Commonsense knowledge in machine intelligence.
ACM SIGMOD Record 46(4) (2018) 49–52

[388] Jebbara, S., Basile, V., Cabrio, E., Cimiano, P.: Extracting common sense knowledge
via triple ranking using supervised and unsupervised distributional models. Semantic Web
(Preprint) (2018) 1–20

[389] Camacho-Collados, J., Pilehvar, M.T.: From word to sense embeddings: A survey on vector
representations of meaning. Journal of Artificial Intelligence Research 63 (2018) 743–788

[390] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.:
Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018)

[391] Chiticariu, L., Danilevsky, M., Li, Y., Reiss, F., Zhu, H.: Systemt: Declarative text un-
derstanding for enterprise. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 3 (Industry Papers). (2018) 76–83

[392] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink:
Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 36(4) (2015)

[393] Verborgh, R., Vander Sande, M., Colpaert, P., Coppens, S., Mannens, E., Van de Walle, R.:
Web-scale querying through linked data fragments. In: LDOW. (2014)

184

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Industrial Relevance of Model-Driven Engineering
	1.1.2 Importance of Domain Modeling in Software Projects
	1.1.3 Use Cases of Domain Modeling
	1.1.4 Recommender Systems for Modeling

	1.2 Challenges of Domain Modeling
	1.2.1 Cost of Domain Knowledge Acquisition
	1.2.2 Heterogeneity of Knowledge Bases
	1.2.3 Lack of Conceptual Knowledge Resources

	1.3 Objectives, Contributions and Outline

	2 Foundations
	2.1 Introduction
	2.2 Foundations of Software Modeling
	2.2.1 Models
	2.2.2 (Meta-)Metamodels
	2.2.3 Modeling Languages
	2.2.4 Domain Modeling
	2.2.5 Domain-Specific Languages
	2.2.6 Model-Driven Methods

	2.3 Foundations of Knowledge Bases
	2.3.1 Knowledge Representation
	2.3.2 Representation Languages
	2.3.3 Knowledge Management
	2.3.4 Linked Data

	2.4 Foundations of Information Extraction
	2.4.1 Basic Computational Linguistics Methods
	2.4.2 Term Extraction
	2.4.3 Fact Extraction
	2.4.4 Distributional Semantics

	2.5 Foundations of Recommender Systems
	2.5.1 Types of Recommender Systems
	2.5.2 Semantics-Aware Recommender Systems
	2.5.3 Recommendation Systems in Software Engineering

	2.6 Summary

	3 Semantic Modeling Support
	3.1 Introduction
	3.2 Related Modeling Methods
	3.3 General Support Procedure
	3.4 Domain Modeling Support Scenarios
	3.4.1 Domain Modeling Languages
	3.4.2 Providing Contextual Information
	3.4.3 Providing Suggestions for Element Names

	3.5 Mappings of Domain Model Relationships
	3.6 Retrieval of Lexical Information
	3.7 Knowledge Acquisition from Text Datasets
	3.8 Knowledge Acquisition from Knowledge Bases
	3.9 Summary

	4 SemNet: Extraction of Semantically Related Terms
	4.1 Introduction
	4.2 Related Extraction Methods
	4.2.1 Keyword and Relationship Extraction
	4.2.2 Word Embeddings

	4.3 Extraction Process
	4.3.1 Overview
	4.3.2 Google Books N-Gram Dataset
	4.3.3 Dataset Conversion
	4.3.4 Dataset Reduction
	4.3.5 Part-Of-Speech Tagging
	4.3.6 Normalization
	4.3.7 Syntactic Patterns
	4.3.8 Co-occurrence Analysis
	4.3.9 Relatedness Computation
	4.3.10 Context Extension
	4.3.11 SemNet Construction

	4.4 Extraction Results
	4.4.1 Conversion Results
	4.4.2 Normalization Results
	4.4.3 Pattern Match Results
	4.4.4 Co-occurrence Results
	4.4.5 Aggregation Results
	4.4.6 Context Extension and Integration Results

	4.5 Evaluation
	4.5.1 Datasets
	4.5.2 Quantitative Evaluation Procedure.
	4.5.3 Quantitative Evaluation Results

	4.6 Working with SemNet
	4.6.1 Data Serializations
	4.6.2 Application Programming Interfaces
	4.6.3 Web Interface
	4.6.4 Top-N Examples

	4.7 Summary

	5 OntoConnector: Integration of Lexical Knowledge Bases
	5.1 Introduction
	5.2 Related Knowledge Integration Methods
	5.2.1 Ontology Matching
	5.2.2 Knowledge Translation
	5.2.3 Data Centralization
	5.2.4 Query Federation

	5.3 General Querying Procedure
	5.4 Sources of Modeling Knowledge
	5.4.1 Lemon-Based Lexicons: WordNet
	5.4.2 OWL Schemata: OpenCyc
	5.4.3 Proprietary Models: ConceptNet

	5.5 Mediator-Based Approach
	5.6 Knowledge Base Specific Queries
	5.6.1 Query Procedure
	5.6.2 WordNet Specific Queries
	5.6.3 OpenCyc Specific Queries
	5.6.4 ConceptNet Specific Queries

	5.7 Query Result Integration
	5.8 Templates for Knowledge Base Integration
	5.8.1 Lemon-Based Lexical Resources
	5.8.2 OWL Ontology Schemata
	5.8.3 SKOS Vocabularies
	5.8.4 JSON-LD APIs

	5.9 Summary

	6 DoMoRe: Implementation of the Recommender System
	6.1 Introduction
	6.2 Related Recommender Systems
	6.2.1 Modeling Assistance Approaches
	6.2.2 HERMES Recommender Project
	6.2.3 EXTREMO Assistant

	6.3 Eclipse Modeling Environment
	6.4 Architecture
	6.5 Recommendation Generation
	6.5.1 Class Name Recommendation
	6.5.2 Association Name Recommendation

	6.6 Ranking Implementation
	6.7 Eclipse Plug-ins
	6.7.1 Model Advisor Plug-in
	6.7.2 Semantic Autocompletion Plug-in

	6.8 Summary

	7 Practical Applications of Semantic Modeling Support
	7.1 Introduction
	7.2 BIZWARE Research Project
	7.3 dwerft Research Project
	7.4 AdA Research Project

	8 Conclusions and Outlook
	8.1 Key Research Results
	8.2 Future Work

