
DoMoRe – A Recommender System for Domain Modeling

Henning Agt-Rickauer1, Ralf-Detlef Kutsche2, Harald Sack3
1Hasso Plattner Institute for IT Systems Engineering, University of Potsdam, Potsdam, Germany

2Database Systems and Information Management Group, Technische Universität Berlin, Berlin, Germany
3FIZ Karlsruhe & Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

henning.agt-rickauer@hpi.de, ralf-detlef.kutsche@tu-berlin.de, harald.sack@fiz-karlsruhe.de

Keywords: Domain Modeling, Recommender System, Information Extraction, Knowledge-Based Modeling

Abstract: Domain modeling is an important activity in early phases of software projects to achieve a shared under-
standing of the problem field among project participants. Domain models describe concepts and relations of
respective application fields using a modeling language anddomain-specific terms. Detailed knowledge of the
domain as well as expertise in model-driven development is required for software engineers to create these
models. This paper describes DoMoRe, a system for automatedmodeling recommendations to support the
domain modeling process. We describe an approach in which modeling benefits from formalized knowledge
sources and information extraction from text. The system incorporates a large network of semantically re-
lated terms built from natural language data sets integrated with mediator-based knowledge base querying in
a single recommender system to provide context-sensitive suggestions of model elements.

1 INTRODUCTION

Motivation. Model-driven engineering (MDE) pro-
poses systematic use of models as primary devel-
opment artifacts for software system construction
(Whittle et al., 2014). These models describe different
aspects of a system on a higher level of abstraction us-
ing particular modeling languages (e. g., UML, entity-
relationship diagrams, or domain-specific languages).
MDE aims at continuously refining models and gen-
erating source code. Consequently, the effort of man-
ually creating code with programming languages is
reduced and recurring tasks are automated.

An important activity in early phases of model-
driven software development is domain model-
ing (Evans, 2004; Fowler, 2010). Its goal is to create
models that reflect the conceptual structures of a busi-
ness domain. These models contain domain-specific
terms and their relations in order to improve the un-
derstanding of the problem field among stakeholders.

Domain modeling requires expertise in model-
driven software development, such as finding the right
abstractions, creating metamodels and correct usage
of generalizations/specializations and aggregations.
Assuming that software engineers have these compe-
tencies, these techniques are usually applied to differ-
ent application areas and industrial sectors. The engi-
neers are required to have detailed knowledge of the

domain in order to build domain-specific models and
derive appropriate refined implementation models.
Assembling domain knowledge is a time-consuming
manual process (e.g., talking to domain experts and
reading specific documentation). Recent modeling
environments (e.g., Eclipse Modeling Project, Mag-
icDraw) provide sophisticated support with respect to
the correct usage of modeling languages and verifica-
tion of models, but assistance with regard to the actual
content and meaning of the model elements is very
limited (Segura et al., 2016; Kuhn, 2010).

Problem Statement. Domain modeling was and
still is a challenging task (Mylopoulos et al., 1990;
Störrle, 2010). It involves collecting a lot of pieces of
information delivered by different types of persons,
documents and other knowledge sources. Domain
modeling is a knowledge intensive process and re-
quires intensive collaboration between engineers and
domain experts. The automation of domain modeling
has been addressed by research (Reinhartz-Berger,
2010), but support of this activity is still an open is-
sue (Frank, 2014). The main challenges of domain
modeling and knowledge acquisition are as follows.

Solutions that build on reusable libraries with do-
main information, such as Domain Engineering, suf-
fer from a cold start problem. Reusable domain
knowledge will become only available if enough solu-



tions have already been developed using that method-
ology while new projects already want to benefit from
this domain knowledge. In the end, domain models
frequently have to be developed from scratch (Frank,
2013).

Collaborations of technical stakeholders (model-
ing experts) and non-technical stakeholders (domain
experts) require a time-consuming learning phase dur-
ing a project (Ionita et al., 2015). Domain experts are
often not familiar with modeling notations, and mod-
eling experts usually have to develop a deeper under-
standing of the domain concepts and terms in order to
arrange them properly in domain models. The biggest
effort is at the modeler’s desk, because it is usually
more time-consuming to find, understand, and pro-
cess all available domain information than to learn a
few modeling concepts of a visual notation.

Domain information is contained in arbitrary
sources. Structured information sources (e.g.,
databases, XML documents, knowledge bases, mod-
els) may be available, but uniform access to all
sources is not available in most cases and may only
be facilitated by building additional search engines on
top of them. Unfortunately, the amount of structured
information sources is vanishingly small compared to
unstructured information. It is estimated that 80 per-
cent of existing data is unstructured1. Domain infor-
mation is often contained in natural language docu-
ments (e.g., text books, manuals, requirements speci-
fications). Relevant facts have to be manually located
first and then interpreted.

Finally, the availability of large conceptual knowl-
edge bases containing domain information is very
limited. Only a few handcrafted semantic databases
exist (e.g., WordNet, ConceptNet, Wikidata) that by
far do not cover the variety of possible domains.
Most approaches of information extraction (Banko
et al., 2007) and automatically created knowledge
bases (e.g., DBpedia, YAGO) focus on factual knowl-
edge on instance level that cannot be used for do-
main modeling on conceptual level. Additionally, the
core of many works (e.g., YAGO, BabelNet, DBpe-
dia) relies on a single source of information only: ex-
traction from Wikipedia’s structured parts (e.g., in-
foboxes, categories).

Contributions and Outline. In this paper, we
present a domain modeling recommender (DoMoRe)
system that incorporates a ready-to-use large-scale
knowledge base of domain-specific terms and their

1https://www.ibm.com/blogs/watson/2016/05/biggest-
data-challenges-might-not-even-know/ (Last accessed July,
2017)

relationships. DoMoRe also uses a set of exist-
ing knowledge bases to retrieve domain information
and is extensible with additional knowledge bases at
low effort. Connected knowledge sources are used
automatically during modeling to provide context-
sensitive suggestions of model elements. The recom-
mender system is integrated into a widely used mod-
eling tool, the Ecore Diagram Editor of the Eclipse
Modeling Project.

The remainder of the paper is organized as fol-
lows. Section 2 presents the general approach and de-
tails the model refinement steps that our system sup-
ports. In Section 3 we describe how existing knowl-
edge sources are used and how the knowledge base of
related terms was created. Section 4 details the imple-
mentation of the recommender system and shows how
provision of contextual information and search-based
suggestions operate. In Section 5 we report on expe-
riences using DoMoRe in different domains and sce-
narios. Related work is given in Section 6, and Sec-
tion 7 concludes the paper and describes future work
directions.

2 SEMANTIC MODELING
SUPPORT

In this section we introduce the concept of seman-
tic modeling support and detail our approach.Model-
ing: The activity of creating and refining models. In
our case these models are domain models that focus
on concepts and relationships of various application
areas.Support: Modeling activities are assisted with
context-sensitive pieces of information. Tool support
is completely automated in contrast to guidelines or
methodologies.Semantic: Modeling support focuses
on the domain-specific terms and their relationships
in domain models in contrast to syntactic modeling
language assistance.

General Support Procedure. The semantic mod-
eling support works as follows: (1) At some point
of time during domain modeling a manual change
in the model is made. This is usually referred to
as model refinement, the activity in which a devel-
oper creates, modifies or deletes a model element
(e.g., a new class). We concentrate on supporting
the modifications that add new content to the model.
All detailed scenarios are described in the next para-
graph. (2) Based on the current state of the model,
domain knowledge is acquired automatically. Knowl-
edge acquisition is based on the terms that are used
to name the elements (e.g., class names or associ-
ation names). We pursue two strategies: First, we



exploit existing structured knowledge sources to ac-
quire the required domain terms and their relations.
We employ mediator-based querying for a uniform
access to this knowledge. Secondly, it is a well known
problem (Colace et al., 2014) that existing knowl-
edge bases (often created manually) do not contain
enough information or do not exist at all for respec-
tive target domains. We address this issue by the au-
tomated creation of own semantic terminology net-
works from natural language datasets that cover a va-
riety of domains. Both approaches are detailed in Sec-
tion 3. (3) Acquired knowledge is transformed au-
tomatically into appropriate suggestions (e.g., related
classes, possible sub- or super-classes) and presented
to the user. It is the goal to present semantically re-
lated model elements that support the developer’s de-
cisions on what to include in the model and how to
connect the elements. After that the procedure starts
all over again.

Modeling Support Scenarios. Many opportunities
exist to create and manage domain models. Domain
modeling is not necessarily bound to using one spe-
cific modeling language. For example, UML class di-
agrams, ER models, and ontologies can be used. All
approaches have in common that the respective mod-
eling language is used to express conceptual struc-
tures of a domain using specific terms to improve un-
derstanding of the problem field. Since our seman-
tic modeling support concentrates on the terms in do-
main models, the methods presented in this paper are
applicable to several modeling languages. Neverthe-
less, we had to exemplarily choose one approach to
illustrate our work, namely UML-like class diagrams,
because they are the most widely used modeling
paradigm in industry (Reggio et al., 2014; Hutchin-
son et al., 2014).

During domain model development the user has
several options to change the model. In the following
we itemize for which modeling activities what kind
of support will be accomplished. We distinguish be-
tween two different kinds of support. First, contex-
tual information will be provided if an element of a
domain model is selected by the developer (Scenar-
ios 1 and 2). Context information includes possible
related model elements with all kinds of relationships
the modeling language offers. Second, if a new ele-
ment is created, automated suggestions will be pro-
vided on how to name the element (Scenarios 3 to 9).
The support depends on the type of connection be-
tween the new element and existing elements of the
model.
Scenario 1 – Selection of a class.The goal of pro-
viding contextual information is the recommenda-

tion of possible connected model elements together
with their types of relations for a selected domain
model element. In case a class is selected (c.f., Fig-
ure 1) possible generalizations/specializations, aggre-
gations (containers and parts), and associations are
shown. Related classes are either unconnected classes
or classes that are connected with an association that
has no name.

Figure 1: Contextual information for a selected class (Sce-
nario 1).

Scenario 2 – Selection of an association.If an asso-
ciation is selected, alternative association names, and
possible other connected classes for each association
end will be shown (c.f., Figure 2). Note that if nothing
is selected, contextual information for every element
of the model will be shown in a summarized form.

Figure 2: Contextual information for a selected association
(Scenario 2).

Scenario 3 – Creation of a class (no connection).
Modeling tools usually offer the creation of new
classes in a model without any connection. Typi-
cally, this happens, when classes are added to the dia-
gram and the respective connections are drawn after-
wards (c.f., Figure 3). In this case, class name sug-
gestions are dependent on all existing class names in
the model. Particularly, in the list of suggestions class
names should appear that are related to all of the ex-
isting classes ordered by relevance.

Figure 3: Related class name suggestions while adding a
class without a connection (Scenario 3).

Scenario 4 – Creation of a sub class.A sub class will
be created, when the developer uses the specialization
link starting from an existing class to empty space in
the diagram (c.f., Figure 4). In this case, class name
suggestions are dependent on the linked super class.
In the example, different types of doctors are shown
(different kinds of medical specialists).
Scenario 5 – Creation of a super class.Analogous
to the sub class creation, a super class will be cre-



Figure 4: Sub class name suggestions while adding a spe-
cialization (Scenario 4).

ated when using the generalization link. The example
shows the recommendation of more general terms for
doctor (c.f., Figure 5).

Figure 5: Super class name suggestions while adding a gen-
eralization (Scenario 5).

Scenario 6 – Creation of an aggregated class.In case
the developer uses a composition or aggregation link
starting from an existing class, an aggregated class
will be created in the diagram. The example in Fig-
ure 6 shows possible parts of a hospital.

Figure 6: Aggregated class name suggestions while adding
an aggregated class (Scenario 6).

Scenario 7 – Creation of a container class.If the op-
posite direction of a composition or aggregation rela-
tion is used, a container class will be created. In the
example used in Figure 7, suggestions are provided
what a hospital can be part of.

Figure 7: Container class name suggestions while adding a
container class (Scenario 7).

Scenario 8 – Creation of an associated class.An as-
sociated class will be created, if the developer draws
an association link from a class to empty space in
the diagram (a new class and an association without
a name will be created). Names for the new related
class will be recommended (c.f., Figure 8). This sce-

nario is very similar to Scenario 3, but the suggestions
are dependent on the linked class only.

Figure 8: Associated class name suggestions while adding
an associated class (Scenario 8).

Scenario 9 – Creation of association.If the devel-
oper creates an association link between two classes,
association names (verbs) will be provided. The sug-
gestions are dependent on both class names. In case
the association does not have a direction, verbs are
suggested that apply to both directions.

Figure 9: Association name suggestions while adding an
association (Scenario 9).

3 DOMAIN KNOWLEDGE
SOURCES

Our intended modeling support requires a large
body of background knowledge in order to provide
model element suggestions for nearly every possible
domain. Since the support focuses on the terms used
in the models, we concentrate on knowledge sources
that provide lexical information.

We pursue two strategies: First, we exploit ex-
isting structured knowledge sources to acquire the
required domain knowledge. Knowledge bases and
ontologies are automatically queried for terms of a
model to retrieve related terms. Secondly, we target
the lack of conceptual knowledge bases by the auto-
mated creation of a semantic network of terms from
natural language datasets.

Mediator-Based Knowledge Base Querying. As
described in the introduction, only a few knowledge
bases exist that contain conceptual knowledge. Word-
Net (Fellbaum, 1998) is the most widely used lexi-
cal database for the English language. Other impor-
tant resources are BabelNet (Navigli and Ponzetto,
2012), a multilingual encyclopedic dictionary, and
Cyc (Lenat, 1995) and ConceptNet (Speer and
Havasi, 2012), both common sense knowledge bases.



Most of the other large publicly available knowl-
edge bases (e.g., DBpedia, YAGO, Wikidata) consist
of a relatively small ontology schema describing the
model of the data and a large body of factual knowl-
edge. Nevertheless, these schemata can be used for
modeling suggestions.

The greatest challenge in using these knowledge
sources is the unavailability of uniform access to lex-
ical information. Heterogenous data models prevent
querying the knowledge bases in a consistent way.
Lexical information of terms and their relationships
exist on schema level, intermediate proprietary data
models and on instance level.

Our approach proposes a mediator-wrapper solu-
tion. A mediator allows the interaction of a user or
system with heterogeneous data sources in a uniform
way. Knowledge bases remain as they are, a wrapper
is responsible for content translation, and the media-
tor provides a single point of access to the information
for the modeling recommendations. Figure 10 shows
the architecture of our approach. We differentiate be-
tween three different layers.

Knowledge 
Base 1

W

r

a

p

p

e

r

...

Knowledge 
Base n

W

r

a

p

p

e

r

Mediator

Knowledge Base

Specific Layer

Terminology

Specific Layer

Modeling Language

Specific Layer

Recommender

Mapper
Modeling

Tool

Figure 10: Three layer mediator-wrapper architecture
to retrieve terminological information from heterogenous
knowledge bases.

In themodeling language specific layerthe devel-
oper uses the modeling tool and interacts with the rec-
ommender. This layer deals with elements such as
classes and associations, and the recommender sug-
gests these types of elements depending on the con-
tent of a model.

The mediator and mapper are located in theter-
minology specific layer. In this layer domain-specific
terms used in a model are relevant (e.g., noun terms
and their related terms). The mediator is responsi-
ble for translating from terminology specific content
to the modeling layer and vice versa. It also man-
ages a set of knowledge bases and their correspond-
ing wrappers and submits queries to them whenever
necessary. The mapper collects and integrates results
of the wrappers and provides the information to the
mediator.

In the knowledge base specific layerthe wrap-
pers communicate with the knowledge bases. Each
wrapper has to deal with different query languages
and formats (e.g., OWL, RDF, SPARQL, JSON)
and different ways of modeling (e.g., graphs, con-
cepts, synsets). We support the automated integra-
tion of three types of knowledge base data models
without the need of any development: (1) Ontol-
ogy schemata: concepts and relationships modeled
using OWL or RDFS classes and object properties,
(2) SKOS-based vocabularies: terms modeled with
concepts and broader/narrower/related relationships,
and (3) Knowledge bases using the lemon model: a
specific way of modeling lexicons of ontologies (Mc-
Crae et al., 2012).

In case none of these data models apply, we sup-
port any knowledge base that offers a SPARQL end-
point. The effort of adding a new knowledge base
to the system is comparatively low, it is only neces-
sary to specify a small set of queries for taxonomic,
part/whole, related and verbal relationships.

Extraction of Semantically Related Terms. We
apply natural language processing techniques on a
large text dataset to identify terms on conceptual level
and their relationships. The approach relies on syn-
tactical properties of sentences and statistical features
of text corpora to perform adomain-independentex-
traction. Large text collections include a lot of redun-
dancy and paraphrasing (Banko, 2009). That means
equal facts are repeated in several documents and
are formulated differently. Additionally, natural lan-
guage has the property that certain lexical items tend
to co-occur more often than others. That implies that
words with similar meanings occur in similar con-
texts, known as the distributional hypothesis (Turney
and Pantel, 2010).

We exploit these features to automatically build
a large database of semantically related terms. We
processed the Google Books N-Gram Corpus (Michel
et al., 2011), a dataset derived from 5 million books
with over 500 billion words. It covers a wide range
of domains, because it contains scientific literature of
lots of areas as well as fiction and non-fiction books.

The dataset provides the information how often a
certain word or word sequence occurs within the orig-
inal text corpus (an n-gram is a sequence ofn con-
secutive words). For example,”the doctor and the
patient – 8,339”is one example of the 700 million 5-
grams in the dataset (c.f., Figure 11a). We apply part-
of-speech (POS) tagging on all n-grams to identify
technical terms (Williams, 2013) and record how of-
ten concept terms in different contexts co-occur (e.g.,
doctor – patient – 418,711 times, c.f., Figure 11b).



We exclude proper nouns and named entities (e.g.,
city names, persons). Using this information, we are
able to obtain for every term a set of related terms
and their frequencies and construct a semantic net-
work (c.f., Figure 11c).

A detailed description of the construction is given
in (Agt and Kutsche, 2013). Several improvements
have been made in comparison to the original version.
The semantic network now covers verbal and ternary
relations in order to suggest associations in domain
models, several heuristics were applied to extend the
length of extracted terms, and a more sophisticated
ranking of terms was developed.

term rel. term freq.

doctor nurse 769,932

doctor patient 418,711

doctor degree 298,385

doctor hospital 202,729
… … …

doctor consult 173,786

doctor prescribe 120,267
… … …

hospital doctor 202,729

hospital patient 370,539
… … …

hospital admit 411,666

hospital leave 380,726

hospital discharge 134,348
… … …

(b) Term co-occurrences(a) N-grams frequencies (c) Semantic network

N-gram Freq.

was admitted to the hospital 40,066

admitted to the hospital for 18,594

discharged from the hospital . 12,158

a nurse at the hospital 1,989

the patient to the hospital 8,252

a patient in the hospital 5,243

the doctor and the nurse 4,827

the patient , the nurse 4,245

nurse assists the patient to 1,255

consult your doctor or pharmacist 4,156

the doctor and the patient 8,339

, call your doctor . 5,262
… …

doctor

nurse patient

hospital

[f:769,932,

rf:0.06547,

nmpi:0.38887]

[f:418,711,

rf:0.03560,

nmpi:0.17270]

consult

[f:370,539,

rf:0.03109,

nmpi:0.19630]
school

[...]

prescribe

[...]

[...]

leaveadmit
[...]

[...]

...

...

Figure 11: Information extraction procedure to construct a
large-scale semantic network from co-occurring terms in n-
gram natural language datasets (f – absolute frequency,rf
– relative frequency,npmi – normalized point wise mutual
information).

In essence, the semantic network is a large-scale
graph in which each term is a node and each di-
rected edge denotes a weighted relationship between
the terms. It comprises 5.7 million unique one-word
terms and multi-word expressions and 114 million re-
lationships. Each relationship is quantified with the
absolute co-occurrence frequency, a computed rel-
ative frequency, and the pointwise mutal informa-
tion (PMI) measurement (see Section 4 – Ranking –
for more details on this associativity score between
terms). While the extraction required sophisticated
hardware and runtime, the semantic network requires
just 7 GB disk space and thus is usable on standard
PC hardware.

4 RECOMMENDER SYSTEM

In this section we detail the realization of the
domain modeling recommender (DoMoRe) system.
We describe how the domain information of a set of
knowledge bases and a self-created semantic network
of terms is used and transformed to recommendations
of model elements according to our nine modeling
support scenarios.

Essentially, the task of the recommender system
is as follows. For a given model element a set of re-
lated model elements has to be determined that are

connected with a specific type of relationship (e.g.,
all possible subclasses of the class ”Doctor” or all re-
lated classes of ”Doctor” and ”Hospital”). In the fol-
lowing we first discuss a mapping of semantic rela-
tionships across different knowledge representations.
After that, the architecture of the recommender sys-
tem is presented. Then, we detail the features of the
recommender system and describe how suggestions
are ranked by relevance.

Semantic Relationships. Domain models describe
concepts and relationships of an application domain
using the means of a modeling language. Although
there is an ongoing foundational discussion in the
conceptual modeling community (Henderson-Sellers
et al., 2015; Atkinson and Kühne, 2015) on how to
properly represent real-world concepts with modeling
languages, UML class diagrams are the most widely
used modeling paradigm in industry (Reggio et al.,
2014; Hutchinson et al., 2014). In this paragraph we
analyze the semantic relationships of UML class dia-
grams from a lexical viewpoint and their representa-
tions in other knowledge sources (c.f., Figure 10 for
the three layers).

We reviewed literature from database re-
search (Storey, 1993), linguistics (Maroto Garca and
Alcina, 2009; Chaffin and Herrmann, 1984), infor-
mation systems (Olivé, 2007; Guizzardi, 2005), and
semantic web research (Almeida et al., 2011; Huang,
2010) and relate the different types of relationships
to each other. Table 1 provides an overview, details
are given as follows.

Table 1: Corresponding semantic relationship types of dif-
ferent modeling paradigms.

Modeling Lan-
guage Relation-
ship

Lexical-
Semantic
Relation-
ship

Knowledge Source
Relationship

Specialization Hyponymy Subclass,
Narrower Term

Generalization Hypernymy Subclass (inv.),
Broader Term

Aggregation
(Part)

Meronymy HasPart (SPW)
Meronym (WordNet)

Aggregation
(Whole)

Holonymy PartOf (SPW)
Holonym (WordNet)

Association
(named)

Agent-
Action

Object Property

Association
(unnamed) or
group of classes

Semantic
Relatedness

Related Term

Specialization and Generalizationare hierarchi-
cal abstraction mechanisms in UML to refine abstract



classes to more specific ones and to group specific
classes to more abstract ones. In lexical semantics
these conceptual relationships are referred to ashy-
ponymyand hypernymybetween words or phrases.
They are mapped tosubClassOf-relationship (and its
inverse) in RDF/OWL ontologies and to thebroader
termandnarrower termrelation in thesaurus specifi-
cation (e.g., based on ISO 25964).

Aggregationis used to specify a part-of relation-
ship between two UML classes. We subsume both
aggregation (parts can exist independently) and com-
position (parts cannot exist independently) under the
term aggregation. In linguistics part-whole relations
are referred to as meronymic relationships (meronyms
being the parts and holonyms being the wholes). Part-
whole relationships are neither directly supported in
thesaurus definition nor in RDF/OWL ontology spec-
ification. There is a W3C best practice specification
Simple Part Whole (SPW) withhasPartandpartOf
relationships that we support. Nevertheless, there
are knowledge bases that contain part-whole relation-
ships but use a non-standard vocabulary (e.g., Word-
Net).

Associationis the third kind of conceptual rela-
tionship we analyzed with respect to other represen-
tations. We differentiate between two types: un-
named associations to express a simple dependency
between two domain model classes and named as-
sociations further specifying the kind of association
(usually with a verb). In linguistics named dependen-
cies fall into the category of case relationships (Chaf-
fin and Herrmann, 1984), more specifically, in our
case, agent-actionrelationships. To some extent
RDF/OWL object propertieswith domain and range
restrictions can be compared to named associations.
In lexical semantics the unnamed association is re-
ferred to assemantic relatedness, an associative re-
lationship describing any functional relationship be-
tween two words. Therelated termrelationship of
thesauri is mapped to this relationship. From a lexical
point of view the unnamed association is similar to a
set of classes grouped by the diagram itself.

Based on these mappings we are able to retrieve
related domain model elements from different knowl-
edge sources for all modeling support scenarios.

Components of the Recommender System.Fig-
ure 12 depicts the architecture of the DoMoRe rec-
ommender system. DoMoRe is integrated into the
Eclipse environment using a set of plug-ins. The
Model Listenerobserves changes in Ecore models
that are developed with the Ecore diagram editor.
Whenever a change in a model is made the current
content of the model is retrieved together with the

newly added or changed model element and its re-
lationships. TheRecommenderis notified and co-
ordinates all subsequent steps of modeling sugges-
tions. First, the domain model is transformed into
a lexical-semantic representation using the domain-
specific terms and semantic relationship mappings
(c.f., Table 1). Based on this representation theSe-
mantic Networkis queried for related terms and di-
rectly delivers ranked lists of related terms to the rec-
ommender. TheOntology Connectormanages the set
of connected knowledge bases and is queried as well.
It incorporates the mediator and mapper (c.f., Fig-
ure 10) and operates the translation of the termino-
logical queries to knowledge base specific queries and
the integration of results. The recommender controls
two components with which the user interacts. The
Model Advisoris a view in the Eclipse environment
that displays contextual information of the model el-
ements. It shows possible generalizations, special-
izations, aggregations, associations, and related ele-
ments. The developer can use this view to easily add
new content to a domain model by drag & drop of
suggested elements to the diagram. The appropriate
relationships will be created automatically.Semantic
Autocompletionis triggered in case a new element in
the model is named or the name of an existing element
is changed. This feature behaves like a search engine.
A context-sensitive pop-up list with names for the re-
spective element is displayed and the suggestions are
filtered while typing.

D
N

S

A

Onto

Connector

Model

Listener

Semantic

Auto-

completion

Model

Advisor
Recommender

Eclipse Modeling 

Environment SemNet

Figure 12: Architecture of the DoMoRe recommender sys-
tem.

Recommendation Generation. In this paragraph
we provide insights into the features of the recom-
mender system by means of examples. We demon-
strate the knowledge retrieval and recommendation
generation for Scenario 3: A new unconnected class
is created and names for that class are suggested. Fig-
ure 13a shows a small domain model example con-
taining two classes connected with a named associ-
ation. After creating the new class the model lis-
tener triggers the recommender and the lexical rep-
resentation of the domain model is generated (c.f.,
Figure 13b). The information need depends on the
model refinement step. In this case, noun terms are



required that are semantically related to bothHospi-
tal andDoctor (c.f., Figure 13c).

Figure 13: Lexical preparation in the procedure of the rec-
ommendation generation.

In the following, the information need is decom-
posed to separate lexical queries for each term and
relationship type (c.f., Figure 14d). The main rea-
son for retrieving the information separately is that
practically no conceptual knowledge base exists that
contains n-ary relationships. In contrast, our semantic
network directly supports ternary relationships allow-
ing more precise results for term pairs, but for more
than two terms separate queries have to be executed
in any case. In the next step, the semantic network is
queried for each term (c.f., Figure 14e) and each con-
nected knowledge base is queried for each term (c.f.,
Figure 14f).

Figure 14: Retrieval in the procedure of the recommenda-
tion generation.

So far, for each term of the original domain model,
and for each relationship type, and for each knowl-
edge source separate lists of related terms have been
determined2. First, results from the knowledge bases
are integrated based on the following principle. Per
term the distinct union of all intermediate results (e.g.,
related terms of ”doctor” from WordNet, BabelNet,
ConceptNet, etc.) is created it is recorded how often
each term occurred. The resulting lists have prelim-
inary order indicating more important terms appear
first (c.f., Figure 15g).

In the final step, the presorted knowledge base re-
sults are integrated into the semantic network results.
First, the knowledge base result and the respective se-
mantic network result for each term are joined using
the importance weight. It assures that terms found in

2For example, if three classes exist in the model and
broader and narrower relationships have to be retrieved
from five knowledge sources, 30 intermediate result lists
will be generated.

Figure 15: Integration and ranking in the procedure of the
recommendation generation.

many knowledge bases receive more prominent posi-
tions in the final ranking. Secondly, one final list of
recommended terms is created. Separate results are
intersected and relative frequencies of common terms
are multiplied. The final list is divided inton seg-
ments: Terms that are related ton query terms appear
first. After that terms follow that are related ton−1
query terms, and so forth. Finally, a sorting by rel-
evance is achieved by applying the pointwide mutal
information score (c.f., Figure 15h). This measure-
ment is explained in the paragraph ”Ranking”.

Generated lists of ranked terms are directly used
in theSemantic Autocompletionfeature of the recom-
mender system. Whenever the name of a class or as-
sociation is edited a context-sensitive pop-up list of
related terms is shown. It behaves like a search en-
gine and is filtered while typing (c.f., Figure 16).

Figure 16: Semantic Autocompletion of the recommender
system: Context-sensitive name predictions and infix
search.

For the other scenarios preparation, retrieval, inte-
gration, and ranking is similar. They only differ in the
queried relationship type (e.g, subclasses/narrower
terms instead of related terms). To display contextual
information several relationship types are queried and
displayed in theModel Advisorview (c.f., Figure 17).

Ranking. It is likely that queries to our semantic
network and the connected knowledge bases deliver
numerous related terms (up to a few thousand for
each query). The ranking implemented in the rec-
ommender component is responsible for presenting
the most relevant model elements first. Hence, if a



Figure 17: Model Advisor of the recommender sys-
tem: Suggesting possible related classes, superclasses, sub-
classes, and aggregations.

list of related terms is retrieved, it will be ordered
and the most important terms appear at the top. This
is achieved by combining different relatedness mea-
sures.

From the construction of the semantic network we
knowabsolute frequenciesof co-occurring terms (c.f.,
Figure 11b). For each term in the network we com-
pute relative frequencieswith respect to each con-
nected related term. This normalization allows to
compare the relatedness among different terms. Both
measures allow a basic ranking of terms, but they have
a shortcoming: very general terms (e.g., time, man,
year) that appear in almost all contexts are likely to
be ranked on prominent positions.

To overcome this disadvantage we implement an
information theoretic measurement:Pointwise mu-
tal information (PMI) and its normalized form (c.f.,
Equations 1). It measures the dependency between
the probability of coinciding events and the probabil-
ity of individual events (first introduced into lexicog-
raphy by (Church and Hanks, 1990)).

pmi(x,y) = log

[

p(x,y)
p(x)p(y)

]

npmi(x,y) =
pmi(x,y)

− log[p(x,y)]
(1)

Applying PMI to the semantic network means that
x andy are terms, and PMI relates the probability of
their coincidencep(x,y) with the probabilities of ob-
serving both terms independentlyp(x)p(y). PMI is
an associativity score of two terms taking into ac-
count their individual corpus frequency, thus, very
frequent and general terms receive lower scores. Un-
fortunately, this measurement also has a shortcom-
ing: Although very general terms are ranked lower,
very rare terms that co-occur only very few times with
other terms tend to receive high scores.

Finally, in order to achieve a balanced ranking our
recommender system uses the lexicographers mutual
information (LMI), which is the NPMI score multi-
plied with the absolute co-occurrence frequency (Mi-
lajevs et al., 2016).

5 DoMoRe IN PRACTICE

In this section we summarize experiences of us-
ing our recommender system in different settings and
domains. A first prototype of the system was used in
the context of the BIZWARE project (Agt et al., 2012;
Agt and Kutsche, 2013). BIZWARE investigated the
potential of domain-specific languages (DSLs) and
model-driven engineering for small and medium en-
terprises in different domains like healthcare, man-
ufacturing/production, finance/insurance, publishing
and facility management. The actors in the setting
were software engineers of the respective companies
aiming at the introduction of DSL-based workflows to
improve their development tasks. Modeling experts
from research closely worked together with the soft-
ware engineers and provided the recommender sys-
tem. The companies planned to used DSLs in cus-
tomer projects, but in the course of the project it
turned out that using DSLs for modernizing own soft-
ware products and development infrastructures was
more effective. The software engineers had little ex-
perience with DSLs, therefore, DoMoRe mainly sup-
ported the domain analysis phase to determine and
agree on domain-specific terms that were later used
in metamodels of the DSLs. Especially, the sugges-
tions helped in the abstraction process to correctly dif-
ferentiate between class and instance level. Analysis
of the modeling sessions showed that the ranking had
to be improved (too general terms at top positions)
and the software engineers missed suggestions of re-
lations between domain-specific terms (extraction of
verbal relations was not available at that time).

DoMoRe was also used in the dwerft project (Agt-
Rickauer et al., 2016), a research collaboration to
apply Linked Data principles for metadata exchange
through all steps of the media value chain. The project
successfully integrated of a set of film production
tools based on the Linked Production Data Cloud, a
technology platform for the film and tv industry to
enable software interoperability used in production,
distribution, and archival of audiovisual content. One
of the crucial tasks of the project was the develop-
ment of a common data model conveying all metadata
from the different production steps (e.g., film script,
production planning, on-set information, post produc-
tion, distribution). The actors in the setting were do-
main experts of the respective tasks (most of them
with no technical background) and modeling experts
that built the domain models and metadata schemata.
A lot of interviews with domain experts had to be
conducted to collect domain-specific knowledge and
discuss drafts of domain models. DoMoRe mainly
supported subsequent modeling steps after the meet-



ings and preparation of interviews with more exten-
sive models that allowed a more efficiently agreement
on necessary metadata.

Currently, DoMoRe is used in the context of the
AdA project3, an interdisciplinary research group in
which film scholars work together with computer sci-
entists to support empirical film studies with tool-
supported semantic video annotation and automated
video analysis. The project objective is to reduce
the effort of elaborate, manual annotation routines to
accelerate the film-scientific analysis of audiovisual
movement patterns on the level of larger data sets. All
annotation data and analysis results will be published
as Linked Open Data using the project’s semantic vo-
cabularies. The collaboration with respect to domain
modeling is similar to the aforementioned project. We
expect similar support by using the recommender sys-
tem for the domain expert interviews.

6 RELATED WORK

Modeling Assistance. Systems for modeling assis-
tance provide additional information and features dur-
ing the modeling process to help the development
of models. They usually concentrate on two areas:
(1) Creation of model libraries or similar content and
(2) developing assistance frameworks and features
that use these libraries. Largest knownmodel repos-
itory in the area of UML models and metamodels is
the Gothenburg UML Repository (Hebig et al., 2016).
It contains over 20,000 models crawled from the web,
images, and from GitHub (only a collection of almost
1,000 models is publicly searchable). It is not sur-
prising, that the majority of the models are imple-
mentation models rather than domain models (e.g.,
a search for ”hospital” or ”doctor” returned 7 mod-
els while a search for ”interface” returned 90 mod-
els). Other important resources are ReMoDD (France
et al., 2012), MOOGLE (Lucrédio et al., 2012), the
AtlanMod Metamodel Zoos4 (altogether containing a
few hundred models).

The HERMES project a framework to build model
recommendation systemsin order to support reuse of
software models (Dyck et al., 2014). Its main goal
is to provide tool support for building model libraries
and offering the implementation infrastructure to cre-
ate recommenders that use content of these libraries.
The EXTREMO assistant (Segura et al., 2016) is a
similar tool to facilitate metamodel development with
uniform model element search in a model repository.

3http://www.ada.cinepoetics.fu-berlin.de/
4http://web.emn.fr/x-info/atlanmod/index.php?title=Zoos

We are sharing the same objectives, but both sys-
tems face a cold start problem: Reusable content will
become only available, if enough solutions have al-
ready been developed or converted to the repository,
but new projects already want to benefit from the do-
main knowledge. To some extent this challenge is ad-
dressed by using WordWeb/WordNet, which we also
use, but those databases contain roughly 150,000 con-
cepts in contrast to our semantic network with 5.7M
terms.

Knowledge-Based Modeling. There are several
works on how model-driven engineering can ben-
efit from formalized knowledge. On theconcep-
tual level there are approaches to unify ontologi-
cal and software modeling paradigms (Kühne, 2016),
approaches to adopt modeling concepts from each
other (Henderson-Sellers et al., 2015), and to extend
MDE languages with ontological foundations (Guiz-
zardi, 2005).

The OntoDSL framework (Walter et al., 2014)
leveragesontology technologieson metamodel level
(e,g, reasoning) to assist DSL users with detect-
ing inconsistencies on model level. The CoCoViLa
tool (Ojamaa et al., 2015) generates metamodels of
domain-specific languages from OWL descriptions
and an approach by (Tairas et al., 2008) use ontologies
in the analysis phase of DSL development, but both
works require manual development of the respective
ontologies.

Severalknowledge sourcesfrom other research ar-
eas exist that can be exploited for domain modeling.
The most famous resource is WordNet (Fellbaum,
1998), a lexical database for the English language,
that most other knowledge-based approaches use (as
we do). It contains around 82,000 nouns synsets and
100,000 noun relationships. OpenCyc (Lenat, 1995)
is common sense ontology with around 230,000
classes and 300,000 relationships. ConceptNet (Speer
and Havasi, 2012) is a multilingual semantic graph
that contains approximately 415,000 English con-
cepts and 900,000 relationships. Linked Open Vocab-
ularies5 is a dataset that stores vocabulary specifica-
tions. To the best of our knowledge BabelNet (Nav-
igli and Ponzetto, 2012) is the largest available se-
mantic dictionary with 3 million concepts. It is based
on WordNet, integrates several other dictionaries and
uses machine translation to achieve multilingualism.
Our DoMoRe recommender system uses all of them
to retrieve terms and domain information.

5http://lov.okfn.org/dataset/lov/



7 CONCLUSION AND FUTURE
WORK

We presented DoMoRe, a recommender system
that automatically suggests model elements for do-
main models. The system relies on a large-scale se-
mantic network of related terms that features 5.7 mil-
lion distinct nodes and 114 million binary and ternary
weighted relationships. DoMoRe additionally inte-
grates with several existing knowledge bases using
mediator-based information retrieval of lexical infor-
mation. This allows to provide context-sensitive in-
formation during domain modeling (Model Advisor)
and to suggest semantically related names for model
elements ordered by relevance (Semantic Autocom-
pletion).

In our future work, we will address more mod-
eling support scenarios (e.g., suggestion of attributes,
operation names, relationship types) that require other
types of information extraction. We will also inves-
tigate how lexical information can be used to detect
semantic inconsistencies in domain models.

Currently, we are preparing a controlled experi-
ment to quantitatively measure the efficiency of our
recommender system in contrast to the qualitative
feedback we received earlier during the practical ap-
plication of DoMoRe. Participants will be introduced
to a modeling tool and asked to perform several do-
main modeling tasks. Subjects are randomly divided
into a treatment group using the tool with recom-
mendation support and into a control group model-
ing without the recommender system. It is planned
to measure the outcome variables time on task and
model completeness.

Acknowledgment: This work is partially supported
by the Federal Ministry of Education and Research
under grant number 01UG1632B.

REFERENCES

Agt, H. and Kutsche, R.-D. (2013). Automated construc-
tion of a large semantic network of related terms
for domain-specific modeling. InAdvanced Informa-
tion Systems Engineering, 25th International Confer-
ence, CAiSE 2013, Valencia, Spain, June 17-21, 2013,
volume 7908 ofLecture Notes in Computer Science
(LNCS), pages 610–625. Springer.

Agt, H., Kutsche, R.-D., Natho, N., and Li, Y. (2012). The
bizware research project. InModel Driven Engineer-
ing Languages and Systems-Exhibition Track, 15th In-
ternational Conference, MODELS.

Agt-Rickauer, H., Waitelonis, J., Tietz, T., and Sack, H.
(2016). Data integration for the media value chain.

In International Semantic Web Conference (Posters &
Demos).

Almeida, M., Souza, R., and Fonseca, F. (2011). Semantics
in the semantic web: a critical evaluation.Knowledge
organization, 38(3):187–203.

Atkinson, C. and Kühne, T. (2015). In defence of deep mod-
elling. Information & Software Technology, 64:36–51.

Banko, M. (2009). Open Information Extraction for the
Web. PhD thesis, University of Washington.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M.,
and Etzioni, O. (2007). Open information extraction
from the web. InIJCAI, volume 7, pages 2670–2676.

Chaffin, R. and Herrmann, D. J. (1984). The similarity and
diversity of semantic relations.Memory & Cognition,
12(2):134–141.

Church, K. W. and Hanks, P. (1990). Word association
norms, mutual information, and lexicography.Com-
putational linguistics, 16(1):22–29.

Colace, F., De Santo, M., Greco, L., Amato, F., Moscato,
V., and Picariello, A. (2014). Terminological ontol-
ogy learning and population using latent dirichlet al-
location. Journal of Visual Languages & Computing,
25(6):818–826.

Dyck, A., Ganser, A., and Lichter, H. (2014). On design-
ing recommenders for graphical domain modeling en-
vironments. InModel-Driven Engineering and Soft-
ware Development (MODELSWARD), 2014 2nd In-
ternational Conference on, pages 291–299. IEEE.

Evans, E. (2004).Domain-driven design: tackling complex-
ity in the heart of software. Addison-Wesley Profes-
sional.

Fellbaum, C. (1998). WordNet : An Electronic Lexical
Database. The MIT Press, Cambridge, MA.

Fowler, M. (2010). Domain-specific languages. Pearson
Education.

France, R. B., Bieman, J. M., Mandalaparty, S. P., Cheng,
B. H., and Jensen, A. (2012). Repository for model
driven development (remodd). InSoftware Engineer-
ing (ICSE), 2012 34th International Conference on,
pages 1471–1472. IEEE.

Frank, U. (2013). Domain-specific modeling languages: re-
quirements analysis and design guidelines. InDomain
Engineering, pages 133–157. Springer.

Frank, U. (2014). Multi-perspective enterprise modeling:
foundational concepts, prospects and future research
challenges.Software & Systems Modeling, 13(3):941–
962.

Guizzardi, G. (2005).Ontological foundations for struc-
tural conceptual models. CTIT, Centre for Telematics
and Information Technology.

Hebig, R., Quang, T. H., Chaudron, M. R., Robles, G., and
Fernandez, M. A. (2016). The quest for open source
projects that use uml: mining github. InProceedings
of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems,
pages 173–183. ACM.

Henderson-Sellers, B., Gonzalez-Perez, C., Eriksson, O.,
Ågerfalk, P. J., and Walkerden, G. (2015). Software
modelling languages: A wish list. In7th IEEE/ACM



International Workshop on Modeling in Software En-
gineering, MiSE 2015, Florence, Italy, May 16-17,
2015, pages 72–77.

Huang, C.-r. (2010).Ontology and the lexicon: a natural
language processing perspective. Cambridge Univer-
sity Press.

Hutchinson, J., Whittle, J., and Rouncefield, M. (2014).
Model-driven engineering practices in industry: So-
cial, organizational and managerial factors that lead to
success or failure.Science of Computer Programming,
89:144–161.

Ionita, D., Wieringa, R., Bullee, J.-W., and Vasenev, A.
(2015). Tangible modelling to elicit domain knowl-
edge: an experiment and focus group. InConceptual
Modeling, pages 558–565. Springer.

Kuhn, A. (2010). On recommending meaningful names
in source and uml. InProceedings of the 2nd Inter-
national Workshop on Recommendation Systems for
Software Engineering, pages 50–51. ACM.

Kühne, T. (2016). Unifying explanatory and constructive
modeling: towards removing the gulf between ontolo-
gies and conceptual models. InProceedings of the
ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pages
95–102. ACM.

Lenat, D. B. (1995). Cyc: A large-scale investment in
knowledge infrastructure. Communications of the
ACM, 38(11):33–38.

Lucrédio, D., Fortes, R. P. d. M., and Whittle, J. (2012).
Moogle: a metamodel-based model search engine.
Software & Systems Modeling, 11(2):183–208.

Maroto Garca, N. and Alcina, A. (2009). Formal description
of conceptual relationships with a view to implement-
ing them in the ontology editor protg.Terminology.
International Journal of Theoretical and Applied Is-
sues in Specialized Communication, 15(2):232–257.

McCrae, J., Aguado-de Cea, G., Buitelaar, P., Cimiano, P.,
Declerck, T., Gómez-Pérez, A., Gracia, J., Hollink, L.,
Montiel-Ponsoda, E., Spohr, D., et al. (2012). Inter-
changing lexical resources on the semantic web.Lan-
guage Resources and Evaluation, 46(4):701–719.

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray,
M. K., Team, T. G. B., Pickett, J. P., Hoiberg, D.,
Clancy, D., Norvig, P., Orwant, J., Pinker, S., Nowak,
M. A., and Aiden, E. L. (2011). Quantitative Analysis
of Culture Using Millions of Digitized Books.Sci-
ence, 331(6014):176–182.

Milajevs, D., Sadrzadeh, M., and Purver, M. (2016). Robust
co-occurrence quantification for lexical distributional
semantics.ACL 2016, page 58.

Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M.
(1990). Telos: Representing knowledge about infor-
mation systems.ACM Transactions on Information
Systems (TOIS), 8(4):325–362.

Navigli, R. and Ponzetto, S. P. (2012). Babelnet: The au-
tomatic construction, evaluation and application of a
wide-coverage multilingual semantic network.Artifi-
cial Intelligence, 193:217–250.

Ojamaa, A., Haav, H.-M., and Penjam, J. (2015). Semi-
automated generation of dsl meta models from formal

domain ontologies. InModel and Data Engineering,
pages 3–15. Springer.

Olivé, A. (2007).Conceptual Modeling of Information Sys-
tems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

Reggio, G., Leotta, M., and Ricca, F. (2014). Who
knows/uses what of the uml: a personal opinion sur-
vey. In Model-Driven Engineering Languages and
Systems, pages 149–165. Springer.

Reinhartz-Berger, I. (2010). Towards automatization of
domain modeling.Data & Knowledge Engineering,
69(5):491–515.

Segura,Á. M., Pescador, A., de Lara, J., and Wimmer, M.
(2016). An extensible meta-modelling assistant. In
Enterprise Distributed Object Computing Conference
(EDOC), 2016 IEEE 20th International, pages 1–10.
IEEE.

Speer, R. and Havasi, C. (2012). Representing General
Relational Knowledge in ConceptNet 5. InProceed-
ings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12), Istan-
bul, Turkey.

Storey, V. C. (1993). Understanding semantic relationships.
The VLDB Journal, 2(4):455–488.

Störrle, H. (2010). Structuring very large domain models:
experiences from industrial mdsd projects. InPro-
ceedings of the Fourth European Conference on Soft-
ware Architecture: Companion Volume, pages 49–54.
ACM.

Tairas, R., Mernik, M., and Gray, J. (2008). Using ontolo-
gies in the domain analysis of domain-specific lan-
guages. InInternational Conference on Model Driven
Engineering Languages and Systems, pages 332–342.
Springer.

Turney, P. D. and Pantel, P. (2010). From frequency to
meaning: vector space models of semantics.J. Artif.
Int. Res., 37(1):141–188.

Walter, T., Parreiras, F. S., and Staab, S. (2014). An
ontology-based framework for domain-specific mod-
eling. Software and Systems Modeling, pages 1–26.

Whittle, J., Hutchinson, J., and Rouncefield, M. (2014). The
state of practice in model-driven engineering.Soft-
ware, IEEE, 31(3):79–85.

Williams, S. (2013). An analysis of pos tag patterns in on-
tology identifiers and labels. Technical report, Tech-
nical Report TR2013/02, Department of Computing,
The Open University, UK.


