Semantic Annotation and Conflict Analysis for
Information System Integration

Henning Agt!, Gregor Bauhoff?, Ralf-D. Kutsche!, Nikola Milanovic?, and
Jiirgen Widiker?

! Technische Universitit Berlin
{hagt,rkutsche}@cs.tu-berlin.de
2 Model Labs GmbH
{nikola.milanovic,gregor.bauhoff, juergen.widiker, }@modellabs.de

Abstract. One of the main challenges in software integration is to over-
come interface incompatibilities. Integration specialists are confronted
with different semantic, structural, behavioral, communication and prop-
erty mismatches. We developed an MDA-based theoretical framework to
address these aspects by systematically modeling integration projects
at the CIM, PSM and PIM levels in order to achieve automatic anal-
ysis, code generation and integration. However, small and medium en-
terprises (SMEs) frequently have problems to apply such methodology
due to the high complexity of general purpose modeling tools like UML
tools, and of ontology editors in the context of semantic enhancement
of MDA-based tools. Our development of the MBIF tool set (Model-
Based Integration Framework) takes care of this ’conditio-sine-qua-non’
requirement in SMEs with available staff under daily business pressure.
In this paper we describe data- and function-oriented semantic enrich-
ment of integration models and the semantic conflict analysis which
discovers matchings between model elements with respect to semantic
process requirements. The solution of MBIFs semantic annotation and
integration tool set was designed under the ’small is beautiful’ philoso-

phy.

1 Introduction

Integration of complex and heterogeneous distributed IT-systems is one of the
major problems and cost-driving factors in the software industry today [1].
Therefore, there is an increasing need to systematically address integration in
accidental architectures that have grown over time in an uncontrolled manner in
heterogeneous enterprise environments. This problem was addressed in a three-
year research activity started in 2007 of our BIZYCLE 3 group at Technische
Universitdt Berlin, in collaboration with six small and medium enterprises from
the region.

3 This work is partially supported by the Bundesministerium fiir Bildung und
Forschung BMBF under grant number (Forderkennzeichen) 03WKBB1B.

One of the main potentials of semantic methods, such as ontologies, is facili-
tating system integration. However, their application is neither straightforward
nor possible in all cases. The common approach to software integration today are
various SOA integration platforms, based on ESB engines which enact integra-
tion process flow, specified and executed in BPEL. Frameworks and languages
for semantic annotation of Web services exist, but scenarios that do not use Web
service wrappers, such as data-stream transfer/processing, are implemented us-
ing e.g., SQL because of performance reasons. This fact significantly limits the
applicability of semantic SOA extensions. Other approaches for system inte-
gration, such as those based on schema matching [2], Extract-Transform-Load
(ETL) tools, or message-oriented middleware platforms (such as WebSphere MQ),
BizTalk or TIBCO) do not offer functional semantic annotation or reasoning and
only rarely support rudimentary data annotation.

Furthermore, ontologies are rarely used in industrial integration practice, at
least by the majority of SMEs, as they appear rather complex from the logical
background, and from the appearance of existing tools. In general, for these
enterprises, even classical general purpose modeling tools are hard to introduce
into daily business, but their co-existence with ontology modeling in different
tools clearly causes capacity and skill problems within the limited staff.

Knowledge about semantics of business data and functions thus remains in
the heads of business analysts and is rarely, if ever, adequately documented and
transported to developers that are implementing the integration solution. This
is a constant source of errors, frustration and costly workarounds. For these
reasons BIZYCLE consortium (www.bizycle.de) was formed to investigate in
large-scale the potential of MDA-based software integration methodologies, in-
cluding semantic concepts and ontologies, in order to develop a theoretical basis
and affordable tool support and practical applicability for SMEs in arbitrary
industrial domains (for the concrete project following the lines of our industrial
partners: health, production/logistics, facility management, and publishing).

The essence of the BIZYCLE integration process [3—6] is in providing multi-
level integration abstractions and making the process partially automatic. The
levels of abstraction are the computation independent model (CIM), platform
specific model (PSM) and platform independent model (PIM). The CIM level
captures the integration business process. This model is refined at the PSM level
where properties of interfaces realizing an integration scenario are described. All
PSM models are transformed to the PIM level, which represents a common
abstraction level which is used to discover integration conflicts (incompatible
interfaces). Based on results of the conflict analysis, appropriate connector (me-
diator) model and code for the connector component are generated.

In this paper we present semantic enrichment and semantic annotations of
BIZYCLE models (Figure 1). Ontologies, as carriers of semantic knowledge, are
represented as models. Their elements, also known as concepts, are assigned
to model elements that describe integration process at the CIM (business pro-
cess) and PSM/PIM (interfaces) levels. Thus, model elements are given domain-
specific meaning. Afterwards, semantic annotations are processed in the model

checking procedure (we call it integration conflict analysis) and semantic depen-
dencies (mappings) between model elements are derived. Later, they are used for
identification of semantically compatible model elements and code generation.
We focus here on investigating semantic compatibility, more information about
the subsequent code generation can be found in [7].

integration
process
references model maps
+ input
semantic input semantic output semantic generate|]
annotation - conflict P dependency - Inti%?gon
model analysis mappings

ref. Neferences f input
ontology \ interface maps

description
model models

Fig. 1. Semantic enrichment of integration models

2 Related Work

System integration with respect to semantic properties relates to several research
areas: semantic annotation [8], ontology application [9], information integration,
schema matching [2] and service-oriented integration [10]. Types of semantic
conflicts in database and information systems integration have been classified in
[11,12]. A survey of ontology-based information integration with focus on roles
and development of ontologies and integration at the ontology level is given in
[13]. Tt observed the lack of mappings and sophisticated methodologies that we
address in our approach.

Semantic annotation of enterprise models has been addressed in [14]. They
describe different annotation types with regard to model interoperability. This
general concept is similar to our approach but does not focus on specific models
nor on realization of the annotations. Detection of semantic conflicts in mod-
els in the context of version control systems is described in [15,16] (ModelCVS
project). Conflicts between model versions are addressed while we consider con-
flicts between different models and abstraction levels.

Many existing integration tools rely on ontologies represented in OWL [17]
and on Web Service technology, such as the METEOR-S framework [10]. In
such an environment annotation and analysis is done at ontology and XML
language level and reasoning tools like Pellet [18], Racer [19] (OWL-based) and
XSB, SWI-Prolog [20] (Prolog-based) are used. To overcome the gap between
ontology space and model-driven engineering, which we also address, in [21] an
ontology-aware MDE platform architecture with semantic enrichment of models
is presented. In contrast to our approach it addresses conflicts between models on

different MOF-levels. Similar to our approach, semantic enrichment of models is
proposed in [22]. The main goal of their OntMT tool is ontology-based creating
of model transformation for interoperability between modeling languages while
we focus on semantic dependency analysis and resolution of interface integration
conflicts.

3 Semantic Annotation

Semantic annotation originates in the Semantic Web community that describes
associations of ontology elements to service interfaces, documents and web re-
sources [8, 14]. It enables machine-based processing of these artifacts. We adopted
this paradigm to semantically annotate model elements of integration project
models at the CIM level and interface description models at the PSM and PIM
level enabling automatic annotation analysis for element matching. In this sec-
tion we describe two metamodels that realize semantic annotation within our
integration framework: the semantic metamodel (SMM) for expressing ontolo-
gies that contain domain knowledge of integration projects and the intermediate
annotation metamodel (AMM) that links the semantic metamodel with respec-
tive metamodels of our framework, using a model weaving approach [23].

The semantic metamodel (Figure 2) defines an abstract DSL syntax for on-
tology representation. The SMM provides semantic concept and predicate meta-
classes to build statements (RDF-like triples) consisting of subject, predicate
and object (e.g., CustomerName IsA Name). In the context of integration arti-
facts we distinguish between knowledge representation of data (DomainObject)
and representation of functionality (DomainFunction). Relations between on-
tology concepts are modeled with predefined predicates: IsA (generalization),
IsInput0f, IsOutputOf (data processing for functions), Has (containment),
IsList0f (data sets) and IsEquivalentTo (equivalence). These types are later
exploited by the conflict analysis algorithm to infer matching model elements.
Our framework allows creation of own ontologies with an Eclipse GMF-based
editor [24] or usage of existing OWL ontologies [25].

DomainObject 1
)
+concept 1..* icConcept =]
+name : String - @
+domain DomainFunction |
Ontology 1.+| Domain |1 +subject| 1 1 | +object | 1sOutputOf
+name : String +name : String
+domains
Lo | Has |
0.1 0.* +domain +spredicate(0. 0.."| +opredicate [pefinedPredicate =]
.)
+parentDomain +subDomain N IsListOf
P +predicate 0.." |sname : String 4‘
cust IsEquivalentT:
+description : String
| —

Fig. 2. Semantic Metamodel for conceptual modeling

The annotation metamodel establishes links between the semantic meta-
model and all other metamodels of our framework (CIM-, PSM- and PIM-
level metamodels), in order to annotate model elements with ontology concepts.
Model elements are thus assigned domain-specific meaning. It is then possible
to compare integration artifacts more precisely and identify semantically equiv-
alent or compatible elements. The features of the model element annotation are
given in Figure 3. It shows part of the annotation metamodel at the platform-
specific level (providing annotations for J2EE Enterprise JavaBeans interface
models). The AMM offers data-oriented and functional annotation (1) with re-
spect to both knowledge representation types of the semantic metamodel (2).
Data-oriented annotations are used to describe all model elements that represent
data at different levels of abstraction (3). Functional annotations describe the
meaning of computational and processing behavior (4). Logical operators link
two or more annotations for combination (5).

Use of logical operators and cardinality is constrained to five annotation
types: Single representation links one model element to one ontology concept
(e.g., ZipcodeParameter — ZipcodeConcept). Containment links one coarse
grained model element to multiple concepts (e.g., AddressParameter—{Street,
Town,PostalCode}). Composition links multiple model elements to one coarse
grained concept (e.g., {Firstname,Lastname} — Name). Multiple and alterna-
tive representation combine annotations with the AND and OR/XOR operators
respectively (e. g., IDcolumn— ((Identifier) && {FirstName,LastName}).

We currently support annotation of integration project models at the CIM
level (abstract data descriptions and integration process) and platform-specific
interface annotations for J2EE applications, relational database systems, SAP
R/3 ERP systems, Web Services and XML structured flat files [24, 6]. All PSM
level models are transformed to the PIM level (a common abstraction level with
a single metamodel) to discover integration conflicts. Thus, annotations given at
the PSM level are transported to the PIM level using model transformations.

DomainObject
(2) /1 (romsmm)
Field
+domainObject | 1. +name : String [1]
target (3)
+annotation| 0..1 +annotation +j2eeElement
DomainObjectAnnotation AnnotatableElement Parameter
(from AMM) 0.1 source 0.* +description : String +number : Integer [1
AnnotationElement 1 .-
+name : String [0..1] () (from AMM) X i X I
+annotation +j2eeFunction Method
| DomainFunctionAnnotation ‘[A unction +name : String [1]
B iption : Stri +Transaction : Strin
0.1 source 0.+ |+description : String g
+annotation|0..1
target 4
+domainFunction |1..* 4 EnterpriseJavaBean

DomainFunction +name : String [1]
(2) % (from SMM) (from PSMM J2EE)

Fig. 3. Semantic data and function annotation (excerpt)

4 Semantic Conflict Analysis

In this section, semantic conflict analysis is introduced. It is an algorithm for
checking semantic compatibility of model elements based on semantic annota-
tions presented in the previous section. We describe the general approach of
performing semantic matching of corresponding models by establishing equiva-
lent or compatible model elements and point out two important features of the
algorithm: annotation comparison based on the five annotation types and
reasoning rules based on the defined predicates of the semantic metamodel.
Furthermore we present how semantic mappings (matching results) are rep-
resented as models as well.

General Approach: Model element matching is performed at two levels:
CIM-PIM, where requirements of an integration project (CIM) are matched
against technical interfaces (PIM), and PIM-PIM, where semantic compatibility
of the underlying systems which implement an integration scenario is investi-
gated. We distinguish between following types of requirements: business object
import/export requirement (the need to import/export data), business function
requirement (necessary functionality) and interface element requirements (e. g.,
parameters of methods that have to be supplied for invocation). Business re-
quirements are generated from definitions specified by integration specialist at
the CIM level. Interface element requirements are created from interface descrip-
tion models at the PIM level during the conflict analysis. Results of the semantic
conflict analysis are requirement mappings: mappings of business object require-
ments to the underlying interface elements, mappings of required to provided
interface elements and mappings of functional requirements to interfaces. Map-
pings thus mark the compatible (matched) elements and are used for subsequent
conflict analysis phases and for connector code generation [26]. The basic algo-
rithm structure is given in Figure 4. Integration project models at the CIM and
PIM level, annotation models and ontology are not shown in the picture, because
they are used in almost all steps of the algorithm.

The process is initiated by creating business requirements (1). Data-oriented
and function-oriented requirement mappings are created separately, based on
given semantic annotations (2). Interfaces that fulfill business requirements are
checked for required import elements that have to be supplied for invocation (3).
For the import element requirements, appropriate export elements are deter-
mined (4). If all requirements are not fulfilled (mapped), the algorithm employs
semantic reasoning (5) on the annotations and ontology to handle the unmapped
requirements. Requirement identification and mapping are performed recursively
to check whether newly generated mappings introduce additional requirements.
Data mappings are cross-checked against functional mappings (6) to eliminate
possible incorrect solutions in which interface elements match, but an interface
provides different functionality than required at the CIM level. Furthermore,
integration specialist has the option to manually map requirements that are
still unfulfilled (7). If multiple solutions are found, a selection can be made or
alternatives can be kept for further analysis phases.

(Get business object
import and export and
business function
requirements

M

y

Business function Business object
requirements requirements
L S Create i h Create business ¢ J

Z| function requi ‘ object requil
(2) L mappings mappings)

))

JL Import element
3 Get iti requirements
() interface element

4
Create import h ()
element
requirement

mappings

[new required
elements
identified]

Business function Business object
requirement mappings requirement mappings

Import element
requirement mappings

requirements

e

[new (Verify business object)
mappings requirement mappings
created] [else] against business function
(quil i

\ V.
Get unfulfilled
| requirements J

4&(7

Fig. 4. Semantic Conflict Analysis Algorithm Overview

[Get unfulfilled \J

(6)

The algorithm is capable of checking several types of semantic conflicts, such
as checking transfer of simple or structured data objects, performing interface se-
lection and call order, integrating connector functions, and supporting multiple
semantic annotations, and simultaneously checking functional and data anno-
tations. The entire algorithm description, as well as exemplary scenarios that
demonstrate these capabilities can be found in [27]. Here we focus on two algo-
rithm features: annotation comparison that matches model elements based on
the five annotation types (section 3) and reasoning rules to deduce compatible
model elements if comparison is insufficient. The first feature is used in activities
(2,4) from Figure 4, and the second is used in the semantic reasoning activity (5).

Annotation Comparison: Model elements are compared based on their
annotations rather than names, as in schema matching approaches. In order
to create appropriate requirement mappings for a given source element, target
elements are searched that either have the same or semantically equivalent an-
notation. Figure 5 illustrates annotation types and how source (filled squares)
and target (white squares) elements can be matched in relation to the ontology
concepts (ellipses). We will exemplary describe analysis of the containment an-

notation type (this is the fifth column in Figure 5, where containment annotation
is the source).

Source Element(s) | Single Multiple Alternative Annotation | Containment Compositional
Represen- | Represen- Annotation Annotation
Target Element(s) | tation tation (PIM only)

{3

Representation
Annotation

X
Multiple
Representation
Annotation A
X n

Alternative
Annotation

XOR,
Containment
Annotation
Compositional
Annotation

Fig. 5. Model element matching depending on annotation types

£

.
Sy
o %k

)
x
¥

Let us assume in our example that customer data has to be transferred be-
tween two systems. At the CIM level an integration specialist would include an
Address object to be transfered, with the containment annotation Address—
{Name,Street, Town, PostalCode}. The algorithm tries to find appropriate el-
ements of interface description models at the PIM level that fulfill require-
ments expressed with above containment annotation. A direct match with an
equal containment annotation is obvious, e.g., assume that AddressParameter
— {Name,Street, Town,PostalCode} is an import parameter at the PIM level,
thus being a direct match for the business object (same annotation: import re-
quirement fulfilled). Alternative annotation does not directly match, because
containment demands the presence of all elements, neither does the multiple
representation annotation, because it implies polymorphy. Single representation
matches containment if a set of exporting PIM interface elements can be found
that has a union match and compositional annotation matches containment if
multiple PIM elements are annotated together with an equal set of ontology con-
cepts. The example of a composite match are three exporting interface elements:
CustNameParam— Name, StreetParam—s Street and TownParam— { PostalCode,
Town}. The semantic conflict analysis algorithms also supports mixed and nested
combinations (only partially shown in the matrix).

Reasoning Rules: The second algorithm feature we describe are reasoning
rules which are applied to semantic annotations, ontology concepts and predi-
cates, in case that annotation comparison from previous section is insufficient.
The rules utilize the defined predicates of the semantic metamodel (Section 3).

Six rules are defined for deducing semantic relationships. Consider the following
example: an import parameter NameParam annotated with NameParam— Name
has to be provided for interface invocation. Rule 1 tries to locate all domain
functions F7,...F, and their respective implementations, whose outputs are an-
notated with Name IsOutputOf Fi,...F;,. Rule 2 finds all interface elements
Iy, ..., I, whose export elements are annotated with ¢q,....,, IsList0f Name,
and performs list iteration operation on Iy, ...I,. Rule 3 considers specialization
and finds all interface elements I, ...I,, whose export elements are annotated
with ¢1, ..., IsA Name. Rule 4 evaluates containment within ontology and pro-
cesses all sets of domain objects referenced with Name Has ¢1....,,. If for each ¢;
an exporting interface element I; can be found, NameParam is composed of I;.
Rule 5 is the equivalent to rule 4, except that it uses functional instead of object
composition. Finally, rule 6 takes equivalence information into account (iq...tp
IsEquivalentTo Name).

Semantic Mappings: The results of the semantic conflict analysis algo-
rithm are kept in a conflict analysis model with requirement mappings that
link the abstract data and function definitions of the integration process (CIM
level) to semantically compatible concrete methods and parameters that actually
provide and require the data and functionality (PIM level). They also connect
matching provided and required interface parts. Recall the above-mentioned ex-
ample of the address object at the CIM level with annotation Address—{ Name,
Street, Town, PostalCode}. Mappings then connect Address to a matching inter-
face that exports such an address and to an import interface, respectively. Both
interfaces are linked as well. The mappings make sure that integration require-
ments are met by the underlying systems and compatibility of the system’s inter-
faces is established. Mappings that have been deduced by reasoning rules usually
result in data manipulation (e.g., aggregating a first and last name). That in-
formation is stored along with the mappings. The conflict analysis model and
referenced integration models are further transformed into an executable form
and finally result in a connector. Connector generation and execution is out of
scope of this paper and can be found in [26, 7].

5 Implementation of the Semantic Conflict Analysis

Semantic conflict analysis is implemented as part of the BIZYCLE Model-Based
Integration Framework (MBIF) based on Eclipse. Our implementation consists
of the following components: annotation editor, Prolog engine, Prolog rule base,
model to Prolog transformation, conflict analysis controller and mapping editor
(Figure 6). The annotation editor is implemented as Eclipse properties view to
manage ontology references, create annotations and edit annotation models us-
ing the Eclipse Modeling Framework API. We use SWI-Prolog [20] as reasoning
engine, that offers a Java API for integration into our framework. All structural
features of the metamodels (classes, associations, generalizations, etc.) and ma-
jor part of the algorithm constitute the Prolog rule base. To enable semantic
analysis on models, all Ecore model artifacts are transformed to Prolog facts

by model-to-code transformation and build the knowledge base for reasoning.
The conflict analysis controller operates the algorithm phases and processes the
Prolog engine’s results to create mapping models. Finally, the mapping editor is
implemented as Eclipse plug-in to edit resulting mapping models and to manu-
ally add mappings that could not be determined automatically.

Annotation Conflict analysis | Maobing models
editor controller output pping
t edit ¢ manage ¢ edit
Annotation input
Prolog SWI-Prolog . .
models, - h Mapping editor
Ontologies knowledge base engine
Ecore-to- * ~
ref. * w/ input
Integration
models Prolog
CIM, PIM rule base

Fig. 6. Semantic Conflict Analysis implementation

6 Conclusion

In this paper, the BIZY CLE approach to semantic enrichment of model elements
was presented, describing business processes (CIM level) and technical interfaces
(PSM and PIM levels) which realize software integration. Semantic annotation
is only the first step in the integration conflict analysis process, other parts be-
ing structural, behavioral, property and communication analysis. Together, they
form a comprehensive MDA-based and tool-supported software integration pro-
cess. Our prototypical MBIF tool suite has entered industrial validation phase.
Based on the feedback from BIZY CLE industrial partners, several additional fea-
tures about the proposed semantic enrichment of software integration process
can be made.

Even the market leaders in software integration practice have very low ex-
posure to formal modeling of semantic knowledge using e.g., ontologies (RDF,
OWL-S or SA-WSDL). Domain specific knowledge is mostly captured informally
and transferred using text files and unstructured free-form diagrams. Further-
more, common ontology tools are very complex, require — in the economy of
SMEs — an unaffordable learning curve. As ontology tools and (mainly UML
based) general purpose modeling tools today are not operated within one soft-
ware development framework, there is no convenient way of code generation.
Hence, a clear benefit of integrating ontologies into software integration process
is difficult to identify.

The compact DSL presented in this work overcomes these problems, and
meanwhile has been accepted by integration domain experts in BIZYCLE related

companies and the industrial domains mentioned: health, production/logistics,
facility management, and publishing. It was evaluated by them as overall im-
provement when compared with existing tools. The ability to add semantic an-
notations at different abstraction levels improved communication within inte-
gration teams, as well as provided formal basis for matching requirement speci-
fication (e.g., at the CIM level) and integration solutions (e.g., at the PSM/PIM
level). Code generation methods (see [7]) improved the perception of benefits
achieved by using MDA. It was possible to derive quantitative improvement
factors which showed that capturing semantic annotations at the business pro-
cess level and transferring them all the way to the code level improves not only
the speed but also quality of complex integration projects by preventing costly
semantic mismatches much earlier in design/modeling phase. Finally, the pos-
sibility to annotate legacy systems for which we provide metamodeling support
was very important, as it allowed to extend the reach of the Semantic Web
technologies which are mostly restricted to Web service-based applications.

However, several problems were also identified. With large models, e.g., com-
plex ERP data models containing many thousand nodes, automatic semantic
annotation becomes a must. We are currently working on a tool which can au-
tomatically extract semantic annotations for the Oracle, SAP and Web Service
platforms to unify them under our ontology metamodel, and will start to set up a
theoretical basis for that under the new project frame of BIZWARE, starting in
summer 2010. We experienced limited use of metadata standards (such as HL7 or
Onix) and lack of their transfer to standardized domain ontologies in all sectors
in which our partners work. We focus on further research in (semi-) automatic
ontology generation, ontology merging, and on the integration of metamodel
knowledge and ontology knowledge representations [28]. Another problem to be
addressed in our follow-up project BIZWARE will be support for the cross-sector
exchange or combination of semantic knowledge, using a new approach towards
orthogonal combination of domain-specific languages (DSLs).

References

1. Pulier, E., Taylor, H.: Understanding Enterprise SOA. Manning (2006)

2. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4) (Jan 2001) 334-350

3. Kutsche, R., Milanovic, N.: (Meta-)Models, Tools and Infrastructures for Business
Application Integration. In: UNISCON 2008, Springer Verlag (2008)

4. Kutsche, R., Milanovic, N., Bauhoff, G., Baum, T., Cartsburg, M., Kumpe, D.,
Widiker, J.: BIZYCLE: Model-based Interoperability Platform for Software and
Data Integration. In: Proceedings of the MDTPI at ECMDA. (2008)

5. Milanovic, N., Kutsche, R., Baum, T., Cartsburg, M., Elmasgunes, H., Pohl, M.,
Widiker, J.: Model & Metamodel, Metadata and Document Repository for Soft-
ware and Data Integration. In: Proc. ACM/IEEE 11th MODELS. (2008)

6. Agt, H., Bauhoff, G., Cartsburg, M., Kumpe, D., Kutsche, R., Milanovic, N.: Meta-
modeling Foundation for Software and Data Integration. In: Proc. 8th International
Conference on Information Systems Technology and Applications (ISTA). (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

Milanovic, N., Cartsburg, M., Kutsche, R., Widiker, J., Kschonsak, F.: Model-
based Interoperability of Heterogeneous Information Systems: An Industrial Case
Study. In: Proceedings of the ECMDA. (2009)

Reeve, L., Han, H.: Survey of semantic annotation platforms. In: Proceedings of
the 2005 ACM symposium on Applied computing, NY, USA; ACM (2005)

. Uschold, M., Griininger, M.: Ontologies: Principles, methods and applications. In:

Knowledge Engineering Review. (1996) 93-155

Patil, A., Oundhakar, S., Sheth, A., Verma, K.: Meteor-s web service annotation
framework. In: Proceedings of WWW ’04. (2004)

Naiman, C.F., Ouksel, A.M.: A classification of semantic conflicts in heterogeneous
database systems. In: Selected papers of the workshop on Information technologies
and systems. (1995)

Goh, C.H.: Representing and Reasoning about Semantic Conflicts in Heterogeneous
Information Systems. PhD thesis, Massachusetts Institute of Technology (1997)
Wache, H., Vigele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hiibner, S.: Ontology-based integration of information - a survey of existing
approaches. (2001) 108-117

Boudjlida, N., Panetto, H.: Annotation of enterprise models for interoperability
purposes. In: Proceedings of the IWAISE 2008. (2008)

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger,
W., Schwinger, W., Wimmer, M.: Lifting metamodels to ontologies: A step to the
semantic integration of modeling languages. In: MoDELS. (2006) 528-542

Reiter, T., Altmanninger, K., Kotsis, G., Schwinger, W., Bergmayr, A.: Mod-
els in conflict - detection of semantic conflicts in model-based development. In:
Proceedings of the MDEIS 2007. (2007) 29-40

Li, C., Ling, T.W.: OWL-Based Semantic Conflicts Detection and Resolution for
Data Interoperability. In: ER (Workshops). (2004)

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. Web Semant. 5(2) (2007) 51-53

Haarslev, V., Mller, R.: Racer: A Core Inference Engine for the Semantic Web. In:
In 2nd International Workshop on Evaluation of Ontology-based Tools. (2003)
SWI-Prolog (2008) http://www.swi-prolog.org/.

Zivkovic, S., Murzek, M., Kiithn, H.: Bringing ontology awareness into model driven
engineering platforms. In: TWOMD. (2008) 47-54

Roser, S., Bauer, B.: Automatic generation and evolution of model transformations
using ontology engineering space. (2008)

Fabro, M.D.D., Bézivin, J., Jouault, F., E.Breton, Gueltas, G.: AMW: a generic
model weaver. In: Proceedings of IDMO05. (2005)

Agt, H., Bauhoff, G., Kumpe, D., Kutsche, R., Milanovic, N., Shtelma, M., Widiker,
J.: Metamodels and Transformations for Software- and Data-Integration. Technical
Report 2010/2, Technische Universitét Berlin (2010)

Bromme, T.: Analyse und Verarbeitung von semantischen Annotationen fiir Web
Services. Diploma Thesis, Technische Universitdt Berlin (2010) (in German).
Shtelma, M., Cartsburg, M., Milanovic, N.: Executable domain specific language
for message-based system integration. In: Proc. MoDELS. (2009)

Agt, H., Widiker, J., Bauhoff, G., Milanovic, N., Kutsche, R.: Model-based Se-
mantic Conflict Analysis for Software- and Data-integration Scenarios. Technical
Report 2009/7, Berlin University of Technology (2009)

Blomgvist, E.: Pattern Ranking for Semi-automatic Ontology Construction. In:
Proc. of the 23rd Annual ACM Symposium on Applied Computing. (2008)

