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Abstract. In order to support the domain modeling process in
model-based software development, we automatically create large
networks of semantically related terms from natural language. Using
part-of-speech tagging, lexical patterns and co-occurrence analysis,
and several semantic improvement algorithms, we construct SemNet, a
network of approximately 2.7 million single and multi-word terms and
37 million relations denoting the degree of semantic relatedness. This
paper gives a comprehensive description of the construction of SemNet,
provides examples of the analysis process and compares it to other
knowledge bases. We demonstrate the application of the network within
the Eclipse/Ecore modeling tools by adding semantically enhanced class
name autocompletion and other semantic support facilities like concept
similarity.
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1 Introduction

1.1 Motivation

Our research work is motivated by the goal to provide automated modeling
support for model-driven software engineering (MDE). Particularly, we address
domain-specific modeling [1], an approach to capture domain knowledge and no-
tation in specialized programming and modeling languages tailored to a specific
domain. These domain-specific languages (DSLs) [2] enable domain experts to
participate in software development and facilitate automation of software system
construction.

We focus on early phases of DSL development in which the problem domain
is identified and domain knowledge is gathered [3]. It is usually during that
phase that domain models in UML class diagram notation, metamodels (ab-
stract syntax models) for DSLs, or entity-relationship diagrams for data-driven
applications are created. All approaches have in common that a relatively simple



meta-language is used and conceptual structures of a domain are expressed using
its terminology in order to improve the understanding of the problem field [4].

Our vision of semantic modeling support [5] is as follows: The content of
a domain model is analyzed during development. Based on the terms used in
the model the modeler receives suggestions on what he or she might include
in the model (e.g., related classes, possible sub- or super-classes, attributes,
aggregations). The suggestions are adapted each time the model is changed.

In this paper, we address the following challenge: Given a set of terms in
a domain-specific model, can we automatically identify a corresponding set of
semantically related terms for this model, and rank them by relevance? In order
to achieve this kind of support, we investigate how domain-specific modeling can
benefit from computational linguistics and knowledge-based methods.

1.2 Domain-Specific Modeling and Computational Linguistics

Working on the connection of different research areas, we briefly introduce the
most important concepts in those fields relevant to this paper.

The main goal of this work is the support of the creation of domain models.
They contain “concepts, terms and relationships that reflect domain insight” [6].
Our main concern is technical terminology. Terms are parts of specialized
vocabularies and can be composed of single or multiple words.

As it is very difficult to find sufficiently large knowledge bases for domain
modeling, we have to construct them ourselves by information extraction. Our
work relies on word n-grams [7] and their frequencies in text corpora. An n-gram
is a sequence of n consecutive words. The frequency of an n-gram is determined
by counting all its occurrences in a given text collection. N-gram statistics are
usually used in speech recognition and natural language processing to predict
which word follows another word using probability of occurrence. We use the
frequency to derive the degree of relatedness between terms.

We apply part-of-speech (POS) tagging [8], a natural language processing
step in which the corresponding lexical category (e.g., noun, adjective) is assigned
to each text token using the Penn Treebank tagset [9], e.g., researchers/NNS
means, that the word is a plural noun. In this paper we use POS-tagging to
identify technical terms.

Semantic relatedness [10] measures the degree of relationship between
words or concepts. The relatedness can either be expressed as an explicit lexical
or semantic relationship, such as hyponymy (e.g., a surgeon isA doctor), or as
a numeric value within a certain scale. Semantic relatedness covers any kind of
lexical or functional relation between words in contrast to semantic similarity,
which only measures how similar two words are.

1.3 Contributions and Outline

To achieve our intended semantic modeling support with automated model el-
ement suggestions, we consider the following: We require a dictionary of terms



that is big enough to cover a large portion of domains with all possible terms
that are used in those domains. The terms should be interconnected if they are
semantically related, thus constituting a semantic network. The degree of re-
latedness should be quantified to enable ranking of related terms. The network
should allow for retrieving related terms of a single query term and of multiple
terms contained in a domain-specific model.

Figure 1 gives an overview of our approach. (1) It relies on automated text
analysis to extract information about technical terms and their relatedness. The
input is a large text corpus from which word and word sequence frequencies
(n-gram statistics) are determined. (2) In our current work, we do not create
the n-grams ourselves, but we use an existing n-gram dataset that was derived
from a 360 billion English word corpus. First, we transform the n-gram statistics
into a queryable database. (3) Then, all n-grams are tagged according to their
part-of-speech and (4) all words are normalized using several rules. Both the
tags and the normalized n-grams are stored in a database as well. (5) Based
on syntactic patterns we perform a terminology co-occurrence analysis to derive
semantically related terms. Using the co-occurrence frequencies we create a large-
scale graph of terms with weighted edges denoting the degree of relatedness. (6)
An interface to SemNet is provided to query for terms and retrieve ranked sets
of related terms.
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Fig. 1. Procedure of creating a semantic terminology network based on natural lan-
guage statistics.

The rest of this paper is organized as follows: In Section 2 we describe in de-
tail how terminology and relatedness information is extracted from the Google
Books n-gram dataset and how the semantic network is created. Section 3 shows
the application of SemNet in a domain-specific modeling environment and pro-
vides examples of the content of the semantic network. In Section 4 we compare
SemNet to existing semantic knowledge bases. Related work is given in Section 5,
and Section 6 concludes the paper and describes future work directions.

2 Identifying Semantically Related Terms

In this section we first describe the properties of the input n-gram dataset and
the kind of preprocessing that is required to extract information from such large



data. We then illustrate how to identify terminology using lexical patterns and
how the patterns are applied to find co-occurring terms. Finally, we show how to
deduce probabilistic relationships between terms and how the semantic network
is created.

2.1 The Google Books N-Gram Dataset

The Google Books project aims at providing a searchable digital library of a huge
amount of books. Since 2004, Google Inc. digitized over 15 million books [11] for
full text book search on the web using optical character recognition. Most of the
books are provided by university libraries or publishers who participate in the
partner programs.

Google selected a subset of approximately 5 million books of the years 1500
until 2008 and built a text corpus of roughly 500 billion words in several lan-
guages for quantitative text analysis. An n-gram analysis was performed that
counts how often a certain word or word sequence occurs within the corpus.
The resulting dataset includes word frequencies for all 1,2,3,4 and 5-grams that
occurred at least 40 times1.

The dataset is split into languages, and can be downloaded2 as tab-separated
plain text files. In our work, we use the English dataset (googlebooks-eng-all-
20120701) that was derived from the English corpus (approximately 360 billion
words in total). The dataset is 2.5 terabytes in size (1-grams and 5-grams) and
contains over 61 billion lines of text. The structure of the files is given as follows.

n-gram TAB year TAB match_count TAB volume_count

the doctor and the patient 2002 281 216

the doctor and the patient 2003 262 205

For example, the first line of the 5-grams denotes that in the year 2002 the
sequence “the doctor and the patient” occurred 281 times in 216 different books.
We decided to use this dataset because it covers an extremely large variety of
literature and terminology in almost every domain.

2.2 Preprocessing

Database Creation. Given 2.5 Terabytes of plain text input data, we first
need to transform the n-gram data into a format that allows us to query and
process it in reasonable time. The n-gram text files are parsed and stored in
a relational database. In order to minimize memory requirements, the schema
is kept simple, we store the complete vocabulary (1-grams) in one table and
use foreign key relationships in the 5-gram table. During the complete process
database creation it is kept in memory to reduce disk I/O, thus optimizing
the processing time. The complete vocabulary consists of more than 10 million
words/tokens and the database contains roughly 710 million 5-grams (21 GB
data, 47 GB indices).

1
The n-gram frequencies are separated by years of publication, but we only use the aggregated
values. Evolution of words over time can be explored under http://books.google.com/ngrams

2
The dataset can be downloaded at http://books.google.com/ngrams/datasets



Part-Of-Speech Tagging. For further terminology analysis, we use 5-grams
only, because they provide the largest available context. We perform part-of-
speech tagging for each of the 710 million 5-grams using the Stanford Log-linear
Part-Of-Speech Tagger V3.1.3 [8] and store the tags in a database, too. The
tagger assigns the lexical class to each word using the Penn Treebank tagset [9].
It operates context-sensitively with high accuracy and is able to identify the
correct lexical class for ambiguous words that belong to multiple classes (e.g.,
the word patient can be a noun or an adjective). The newest version of the
Google Books n-gram dataset already includes syntactic annotations. We did
not use them because they are based on a cross-language tagset that does not
allow the identification of proper nouns (see Section 2.3).

Normalization. Word variations are unified in the last preprocessing step. We
perform plural stemming on all nouns (e.g., doctors → doctor) using the previ-
ously obtained part-of-speech information. Genitive ‘s is removed, and normal
nouns and adjectives are lowercased. Figure 2 shows examples of normalized
n-grams containing the word doctor with their part-of-speech tags.

id word1 word2 word3 word4 word5 frequency

1 for the degree of doctor 86,176

2 the doctor - patient relationship 38,931

3 the honorary degree of doctor 15,464

4 between doctor and patient . 7,697

5 the doctor and the nurse 6,720

6 your doctor or pharmacist . 2,654

7 doctor and other medical personnel 1,095
...

id pos1 pos2 pos3 pos4 pos5

1 IN DT NN IN NN

2 DT NN : NN NN

3 DT JJ NN IN NN

4 IN NN CC NN .

5 DT NN CC DT NN

6 PRP$ NN CC NN .

7 NN CC JJ JJ NN
...

Fig. 2. Examples of normalized 5-grams and their corresponding part-of-speech tags
(710 million rows in total, 21 GB + 14 GB disc space without indices).

2.3 Lexical Patterns

In order to find multi-word terms in n-gram natural language fragments we
use lexical patterns similar to the lexico-syntactic patterns by Hearst [12]. We
analyzed several existing dictionaries and determined the most frequent part-of-
speech patterns of technical terms. They are predominantly composed of simple
noun, noun-noun and adjective-noun combinations (approx. 77 percent of the
terms). We summarize the most important patterns used for the terminology
extraction in Table 1.

Special Patterns. The table also includes some special patterns that are re-
quired because of the tokenization of the input n-gram data. Words with hyphens
are split into separate tokens, thus we include patterns for those cases (e.g.,
NN : NN ). Usually, these words would be treated as single nouns. Foreign word



Pattern Explanation Example

NN Noun the doctor and the nurse

JJ NN Adjective-Noun Combination medical doctor or a psychiatrist
NN NN Noun-Noun Combination family doctor for a checkup
NN : NN Nouns with Hyphen doctor or nurse - midwife

FW FW Foreign Word Combination doctor ( honoris causa )
JJ NN NN Adj-Noun-Noun Combination doctor or mental health professional

SYM : NN Hyphen Noun with Short Prefix co - operation with doctor

Table 1. Excerpt of the lexical patterns of technical terms used in the analysis process
(in decreasing order of frequency; 20 patterns in total).

patterns (FW) are required to identify special medical or biological terminology
that makes use of Latin words. Additionally to the patterns presented in Table 1,
we allow several variations (e.g., JJ NN NN, FW, or JJ : NN ). Please note that
we explicitly exclude proper nouns because our main focus lies on conceptual
terminology for domain-specific modeling.

Pattern Size. Currently, all our patterns have a size of three tokens at most.
The reason for that is the limited context of a 5-gram. We can maximally iden-
tify a relationship between a single-word term and a triple-word term (see next
section for more details). In our future work, we will derive our own n-gram
statistics to be able to analyze a larger context with longer variations of the pat-
terns. Nevertheless, the frequency of multi-word terms with four or more tokens
is comparatively low.

2.4 Co-occurrence Analysis

The identification of semantically related terms is grounded in the Distributional
Hypothesis first discovered by Harris [13] in the Fifties. It describes that words
with similar meanings occur in similar contexts. In our case the context is a five
word window given by a 5-gram. The absolute frequencies provide information
on how often a specific context occurred. Consequently, terms that co-occur more
often have a stronger relationship.

Stop Words. Prior to the analysis, we created a stop word list containing
the most frequent words (e.g., “the”, “of”, “is”, “to”, “in”, “a”), as well as
punctuation and quotes, which are treated as separate tokens. We discard 5-
grams that contain four or five stop words because they contain either one or
zero terms. As a result, the size of the data is reduced to 58 percent and pattern
matching is only applied to 415 million 5-grams.

Non-consecutive Terms. In order to identify a semantic relation it is required
to determine at least two co-occurring terms in one 5-gram. The terms must



be separated by at least one token, for example by a coordinating conjunction
(e.g., and, or), or by a preposition or subordinating conjunction (e.g, of, in,
for), or by special characters such as brackets. In comparison to Tandon et
al. [14] who extract named relationships from n-grams, we explicitly exclude
consecutive terms and include separation of terms by conjunctions because we
want to extract the degree of relatedness between single- and multi-word terms.

Hierarchical Matching. Figure 3 shows examples of how the lexical patterns
are hierarchically and non-consecutively applied. (a) Three simple nouns sepa-
rated by a preposition and a conjunction are detected. (b) A single-word term
and a three-word term are identified. The pattern on the highest level remains,
respective lower level patterns are discarded. (c) This 5-gram actually contains
a term consisting of four tokens which cannot be used to identify a semantic
relation. The hierarchical pattern matching would detect the terms part-time
and doctor. The 5-gram is discarded because they are in sequence. (d) In the
English language certain nouns occur in almost every context because of their
idiomatic use. Popular examples are: number, part, kind, time, day. We built a
list of bad phrase patterns to exclude those occurrences (e.g., part of, this time,
each day).

Triple

Double

Single

POS Tag NN IN NN CC NN

5-Gram consultation between doctor and patient

Triple

Double

Single

POS Tag NN CC JJ NN NN

5-Gram doctor or mental health professional

(a) Three single-word terms.

(b) Single-word term and a three-word term.

Triple

Double
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POS Tag CC NN : NN NN

5-Gram and part - time doctor

(c) Discarded consecutive patterns.

Triple
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Single

POS Tag JJ NN IN NN IN

5-Gram the number of doctors per

(d) Discarded term in an idiomatic phrase.

Fig. 3. Examples of the hierarchical application of lexical patterns.

2.5 Network Creation

The result of the co-occurrence analysis is a large table of quantified binary
relationships between terms (231.8 million relations in total, including back ref-
erences). In fact, only 111.5 million 5-grams (15.69%) contained two or three
terms. Figure 4a shows a small excerpt of the result. Since the same terms can
co-occur in different 5-grams, the result contains many duplicates. As a next
step we aggregate the absolute frequencies. Using the aggregated frequencies it
is already possible to query for related terms ordered by strength of the rela-
tionship. Figure 4b shows the top 3 most related terms of doctor and nurse.



In a last step we iterate through all terms and compute the relative frequency
(co-occurrence probabilities) for each of its related terms with respect to the
other related terms. This normalization allows later comparison of the degree
of relatedness across multiple terms (see Section 3.2). As a result we obtain a
semantic graph in which each term is a node and each relationship is repre-
sented with two directed weighted edges as shown in Figure 4c. For example,
the absolute frequency of doctor co-occurring with nurse equals that of nurse
co-occurring with doctor (783,395 times). However, doctor also has strong re-
lationships with lawyer and degree and additionally co-occurs with more terms
than nurse does. Consequently, the relative frequency for doctor→nurse is lower
than for nurse→doctor.

term rel. term frequency

doctor nurse 18,656

doctor nurse 18,022

doctor degree 16,094

doctor lawyer 13,258

nurse doctor 13,258

nurse doctor 4,135

nurse patient 9,750

nurse physician 12,355

(a) Co-occurring terms of

doctor and nurse with

absolute frequencies.

term rel. term frequency

doctor nurse 783,395

doctor lawyer 685,529

doctor degree 555,031

nurse doctor 783,395

nurse physician 383,167

nurse patient 188,288

doctor

nurselawyer

patient

physician

(b) Aggregated absolute frequencies

of the top 3 related terms of doctor

and nurse.

...

0.059

0.068

0.036

0.136

0.033

0.066

0.053

0.003

0.007

0.092

(c) Created network of related

terms with relative frequencies

(small excerpt).

...

...

...

...

...

...

...

degree 0.048

0.011

Fig. 4. Process of co-occurrence aggregation and relatedness degree computation.

Properties of SemNet. The resulting network of semantically related terms
comprises 2.7 million terms and 37.5 million weighted, directed edges. It requires
2.2 GB disk space, thus fitting into main memory on standard PC hardware.
The automated analysis identified 268,937 distinct single-word terms, 2,115,494
double-word terms and 355,689 triple-word terms. We provide a relational data-
base version (SQLite) and a graph database version (Neo4J) of SemNet for
download and offer a web interface to query the network3.

3 Application of SemNet

In this section we provide examples of SemNet, illustrate how joint semanti-
cally related terms are retrieved from the network for multiple input terms and
describe an application of SemNet in a domain-specific modeling environment.

3.1 Querying Single Terms

Obtaining related terms for a single term from SemNet is a straightforward task.
We developed a Java and PHP API for the network to retrieve ranked lists of

3 http://www.bizware.tu-berlin.de/semnet/



related terms for given input terms. Terms can also be queried directly using
SQL for the SQLite version or Cypher Query Language for the Neo4J version
of SemNet. Table 2 shows examples of the 10 most related terms for terms of
different degrees of specificity.

teacher doctor electricity software
engineering

lymphocytic
choriomeningitis

f 32.4M 19.1M 7.2M 212K 23K

1 student nurse water CASE virus
2 parent lawyer gas field LCM
3 school degree quantity component mouse
4 pupil office magnetism area cell
5 child patient heat computer science syngeneic
6 administrator hospital use component cytotoxicity
7 role teacher conductor system mediated cytotoxicity
8 training order current discipline mumps
9 work law steam aspect lymphocyte
10 principal dentist amount term monkey

#r 8728 5519 2716 144 31

Table 2. Examples of the top 10 automatically identified related terms for terms with
different degrees of specificity (f – absolute term frequency in the original text corpus,
#r – number of related terms).

3.2 Querying Multiple Terms

For the usage of SemNet in a modeling tool it is not sufficient to retrieve related
terms just for single terms. All terms in a model should be jointly considered.

Ranking Common Terms. We implemented the following strategy in our
query interface to retrieve a set of related terms for multiple input terms: For
each of the input terms we obtain the set of related terms together with their co-
occurrence probabilities. All sets of related terms are intersected to determine a
common set of related terms. In order to determine a new ranking of the common
terms the co-occurrence probabilities are multiplied and decreasingly ordered.
This ensures, for example, that a related term of high importance in one set
and of less importance in another set will be ranked in a middle position in the
joint result. In case n terms (n > 2) are queried, we repeat the intersection and
probability computation for subsets of n − 1 input terms and rank the results
after the very first intersection of all input terms. This avoids empty results
in case many terms are queried but ensures that common semantically related
terms are ranked higher.

Dealing with Ambiguity. Consequently, this mechanism allows to deal with
ambiguity of terms. Imagine a query for database and table. Top most related



term for table is chair in the sense of furniture. Second most related term for
table is contents in the sense of a tabular array. A combination of the related
terms of database and table as described before will lower the rank of all furniture
related terms or exclude them.

3.3 Semantic Autocompletion in a Domain-Specific Modeling Tool

SemNet is used in the context of the research project BIZWARE4, a collaboration
of two academic partners and eight small and medium software enterprises. The
industrial partners develop domain-specific languages (DSLs) in their respective
business domains and the main task of the academic partners is the development
of methods and tools to support DSL development.

A commonly used tool for DSL development and domain modeling is the
Eclipse Ecore Diagram Editor5. We developed an extension for it, called Se-
mantic Autocompletion (SemAcom) [15]. Whenever a new class is created in
the diagram the developer can activate a context-sensitive pop-up list of related
terms with a Ctrl-Space keystroke. The terms are retrieved from SemNet de-
pending on the current content of the model. The suggestions are filtered while
typing, thus providing a feature similar to autocompletion in search engines.
Figure 5 shows SemAcom in action.

Fig. 5. Modeling with semantic autocompletion in the Ecore Diagram Editor.
Left : SemAcom provides suggestions for the term “Pregnancy”. Right : The sugges-
tions are adapted according to the newly created class “Ectopic Pregnancy”.

4
This work is partially supported by the Bundesministerium für Bildung und Forschung BMBF
under grant number 03WKBU01A.

5
http://www.eclipse.org/modeling/emft/?project=ecoretools



4 Comparison to Other Semantic Knowledge Bases

The evaluation of information extraction techniques is difficult because gold
standards only exist for a few subtasks of it. We apply the following strategy to
assess the content of SemNet: We compare it to two existing (partially) manually
created semantic databases: WordNet V3.0 [16] and ConceptNet V5.1 [17]. We
chose these two works for the following reasons. On the one hand, they contain
information on terminology and their semantic relations, similar to SemNet. On
the other hand, both projects focus on conceptual knowledge that can be used in
the area of domain-specific modeling [18, 19]. Automatically created knowledge
bases such as YAGO6 and DBpedia7 have limited benefit for domain modeling
because they concentrate on factual knowledge (on instance level).

Using the concrete example pregnancy, we first show what kind of information
is contained in the respective networks and how it is represented. Secondly, we
compare how much information of WordNet and ConceptNet is contained in
SemNet.

WordNet. WordNet is a lexical database for the English language [16]. It mod-
els synsets that group words sharing the same sense. It contains word senses
for nouns, verbs, adjectives and adverbs (117,659 synsets in total, 82,115 nouns
synsets and 102,249 noun relations). WordNet mainly comprises synonymous,
taxonomic and part-whole relations. Figure 6a shows 7 out of 32 relations of the
term pregnancy. The word sense in the middle groups the synonyms pregnancy
and maternity and relates them to other senses.

ConceptNet. ConceptNet is a “large semantic graph that describes general
human knowledge” [17]. It models concepts that are expressed in natural lan-
guage phrases. It was created manually based on the Open Mind Common Sense
project8 and partially automatically from Wiktionary and the ReVerb project.
Lexical types are not differentiated, it contains concepts such as database soft-
ware, beautiful, and build aircraft (414,188 English concepts in the core version
of it and 903,621 relations between them). Besides taxonomic and part-whole
relations it contains several other relation types (e.g., AtLocation, HasProperty).
Figure 6b shows examples (7 out of 58 relations) for the concept pregnancy.

SemNet. In SemNet we automatically created a graph of noun terminology
(2,740,120 terms). Edges between terms are probabilistic links that represent
the latent semantic association between words based on the Distributional Hy-
pothesis [13] (37,542,622 relations). Figure 6c shows the term pregnancy together
with its 10 most related terms (4,039 relations in total, for space reasons we omit
back references).

6
http://www.yago-knowledge.org

7
http://dbpedia.org

8
http://csc.media.mit.edu/
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Fig. 6. Examples of how terminology information for the topic pregnancy is represented
in WordNet, ConceptNet and SemNet.

Quantitative Evaluation Procedure. The evaluation of how much informa-
tion of WordNet and ConceptNet is contained in SemNet is performed in two
steps. We first determine how much of WordNet’s and ConceptNet’s noun termi-
nology is included in SemNet. Secondly, we take the found synsets and concepts,
respectively, and determine how many of their relations are contained in Sem-
Net. Therefore, we can examine how well the specific relations can be detected
by our applied methods of statistical semantics.

Nouns are already classified in WordNet (82,115 synsets), we exclude 7,714
instance synsets (e.g., city names) and synsets solely having terms with more
than 3 words (1122) or only containing digits and special characters (285). As a
result 72,994 noun synsets are evaluated. A synset is counted as found if at least
one of the synonyms is contained in SemNet.

The comparison of ConceptNet with SemNet is challenging because concept
names in ConceptNet can contain all types of lexical expressions, thus we cannot
select all nouns. We tried to determine noun concepts by POS tagging, but it is
too imprecise for single words with no context. Because of that we determined
all concepts in ConceptNet that are also nouns in WordNet. As a result 49,301
concepts are evaluated.

Relations of WordNet and ConceptNet are evaluated as follows. All found
synsets/concepts are iterated and for each of them we retrieve the related terms
from SemNet. We then determine how many of the WordNet/ConceptNet rela-
tion targets are contained in the list of related terms of SemNet.

Quantitative Evaluation Results. 56,321 of 72,994 noun synsets in Word-
Net (77,16%) have been found in SemNet. The 72,994 synsets comprise 98,681
distinct noun terms of which 61,349 (62,17%) have been found in SemNet. Noun
coverage is relatively low compared to synset coverage because in many cases
one synonym of the synset is found in SemNet but other rare synonyms cannot
be found due to the threshold of at least 40 occurrences in the n-gram dataset (a
5-gram must occur at least 40 times in the original text corpus to be included in
the n-gram dataset). This threshold cannot be relaxed at the moment because of



the way the Google Books n-gram dataset is constructed and distributed. 40,625
of 49,301 concepts in ConceptNet (82,40%) have been found in SemNet.

The results of the relation analysis are summarized in Table 3. 61,931 ex-
plicit hyponym/hypernym and meronym/holonym relations and 11,832 implicit
synonym relations of WordNet have been evaluated. 256,213 relations of Con-
ceptNet have been evaluated (for space reasons we only include the most frequent
relations of ConceptNet).

WordNet ConceptNet

Relation Type Number of
Relations

SemNet
Coverage

Relation Type Number of
Relations

SemNet
Coverage

hyponym/hypernym 53,785 48,53% IsA 90793 45,85%
RelatedTo 21936 69,66%
AtLocation 19408 53,86%
HasProperty 19265 63,25%
have or involve 16101 74,78%
ConceptuallyRelatedTo 11166 75,42%
UsedFor 9313 66,53%
HasA 7829 80,65%

meronym/holonym 8,146 46,03% PartOf 5914 48,92%
synonym 11,832 52,87% SimilarTo 1467 25,77%

Table 3. Results of the relation evaluation.

The very good results for RelatedTo / ConceptuallyRelatedTo relations
support that our methods accomplish the identification of semantically related
terms. Average results are achieved for taxonomic and part-whole relations. The
biggest coverage is gained for membership relations (have or involve, HasA)
because the distance between two terms in natural language expressions indicat-
ing such a relationship is low. Thus, 5-grams include them more often. Similar
observations have been made by Nulty et al. [20].

Additionally to the explicit relations, we also compared WordNet’s synonym
relations, implicitly given by the synset, with SemNet. For example, given the
synset (nanny, nursemaid, nurse), we evaluate the relations nanny↔nursemaid,
nursemaid↔nurse, and nanny↔nurse. 52,87% of the 11,832 evaluated synonym
relations are contained in SemNet. In ConceptNet, SimilarTo is the only re-
lationship indicating synonymy. SemNet only covers 25,77% of these relations.
The reason for that is that the identification of these relationships usually require
sentence level analysis [12, 14] which is not possible with 5-grams.

In summary, the automated identification of semantically related terms shows
very good results, although only a context of five words given by a 5-gram is
available. Compared to manually created knowledge bases with a few hundred
thousand terms and relations, SemNet comprises a variety many times greater.



5 Related Work

Since this work is related to several research areas, we summarize the most
important approaches in the following categories:

Automated Construction of Semantic Knowledge Bases. Research on
extracting information from semi- and unstructured data sources has especially
been boosted by Semantic Web and Linked Open Data initiatives in the last
decade. Popular examples of automatically constructed knowledge bases are
YAGO and DBpedia that extract instance knowledge from Wikipedia, but we
focus on the extraction of conceptual knowledge. Similar to our approach, n-
grams are analyzed by Tandon et al. [14]. Their focus is the population of Con-
ceptNet by learning patterns for specific relations limited to single-word terms.
In contrast we use the n-grams to extract semantically related multi-word terms.
Terminology extraction is mainly investigated in the area of document-based
information retrieval. The baseline model in this area is tf-idf. State-of-the-art
systems use supervised learning or graph-based methods and external knowl-
edge sources [21]. Because of the small n-gram language fragments we rely on
part-of-speech patterns, similar to lexico-syntactic patterns by Hearst [12]. Nulty
et al. [20] also investigate lexical patterns in n-grams, but concentrate on the
patterns that separate the terms. We deduce semantic relatedness between
terms based on statistical semantics [22] using n-gram frequencies. Alternative
approaches use wikipedia-based explicit semantic analysis [23] or combine Word-
Net concept hierarchies and collaboratively constructed knowledge sources [10].

Modeling Support By Semantic Knowledge Sources. Semantic modeling
support has been predominantly investigated in the area of connecting ontol-
ogy development and model-driven development [24] and model reuse. Tairas
et al. [18] describe how the domain analysis phase of DSL development benefits
from the use of ontologies. Their approach is based on manual ontology construc-
tion during early stages of domain-specific language development. Thonggoom
et al. [25] support conceptual modeling using data model instance repositories.
The repositories are created from SQL schema libraries with several hundred
relations, thus containing patterns from prior database designs to enable mod-
eling knowledge reuse. The REBUILDER UML system [26] aims at a similar
goal for UML diagram reuse. The design assistant uses case-based reasoning.
Both approaches are comparable to our semantic autocompletion application.
In contrast to our solution they can suggest model fragments, but are dependent
on the relatively small size of the input data.

6 Conclusion and Future Work

We presented an approach to automatically extracting multi-word terms and
their degree of semantic relatedness from n-gram natural language statistics.



Using only a window of five words given by the 5-grams and 20 lexical patterns,
we have been able to create SemNet, a graph of related terms with 2.7 million
nodes and 37.5 million probabilistic edges denoting the latent semantic rela-
tionship between them. We demonstrated the usage of the semantic network in
a domain-specific modeling environment providing semantically enhanced class
name autocompletion for the Ecore Diagram Editor. However, the usage of Sem-
Net is not limited to modeling. For example, it can be used for keyword expansion
in search, for automated topic suggestions [27] or as background knowledge for
natural language processing tasks.

In our future work, we will derive our own n-gram statistics from text cor-
pora in order to analyze a larger context and to remove the limitation that terms
consist of three words at most. We will apply our methods to other languages,
especially for German we expect better term coverage because of the more fre-
quent use of compounds. Currently, we investigate how to effectively combine
probabilistic information with specific relations in knowledge bases. The seman-
tic network itself leaves plenty of room for applying clustering in order to find
domains. Finally, we plan to implement more types of modeling suggestions
(e.g., attributes, relations, abstractions/refinements) and even complete model
fragments by investigating patterns in existing domain models.
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