
Modeling and Analyzing Non-functional
Properties to Support Software Integration

Henning Agt1, Gregor Bauhoff2, Ralf-D. Kutsche1, and Nikola Milanovic2

1 Technische Universität Berlin
{henning.agt,ralf-detlef.kutsche}@tu-berlin.de

2 Model Labs GmbH
{gregor.bauhoff,nikola.milanovic}@modellabs.de

Abstract. Software integration is one of the major needs as well as
cost driving factors in the software industry today. Still, very few estab-
lished methodologies exist, especially those addressing integration with
respect to non-functional properties. Industry studies show that disre-
garded and hidden non-functional incompatibilities between systems and
their interfaces are the constant source of errors and costly workarounds.
We introduce a model-based process that allows dynamic definition of
non-functional properties in the context of software integration, present
a NFP taxonomy, and propose a method for formal analysis of interface
incompatibilities with respect to these properties.

1 Introduction

Software and data integration practice is usually focused on structural and com-
munication compatibility conflicts that require transformation of data types and
structures and connection of communication channels. Integration frameworks
and tools exist which address these issues to some extent (e. g., [1, 2, 3]). How-
ever, non-functional properties (NFP), such as reliability, availability, security,
timeliness and cost play the crucial role in software integration when it comes to
satisfying business process requirements. Their analysis is either neglected or in-
formal, following best practices. Sometimes this is not enough as non-functional
incompatibilities may compromise not only the quality of integration solution,
but also limit its functionality.

For these reasons, as part of the research project BIZYCLE1, we investi-
gate in large-scale the potential of model-based software and data integration
methodologies, tool support and practical applicability for different industrial
domains (the consortium comprises of six system integrators from health, pub-
lishing and media, facility management, production and logistics sectors). We
have developed an MDA-based methodology [4, 5], we call it the BIZYCLE in-
tegration process, to systematically model integration projects at different levels
of abstraction in order to achieve automatic analysis, code generation and in-
tegration. In this section we cover the basic aspects of the process and in the

1 This work is partially supported by the Bundesministerium für Bildung und
Forschung BMBF under grant number (Förderkennzeichen) 03WKBB1B.

2 Henning Agt et al.

remainder of the paper we concentrate on how to use models of non-functional
properties to facilitate integration compatibility checks.

The essence of the BIZYCLE integration process is to provide multilevel
integration abstractions and to make software integration partially automatic.
The levels of abstraction are computational independent model (CIM), platform
specific model (PSM) and platform independent model (PIM) level. The CIM
level captures the integration business process. Existing systems to be integrated,
interfaces and their properties realizing an integration scenario are described at
the PSM level. In contrast to the usual MDA philosophy, all PSM models are
transformed to the PIM level, which represents a common abstraction level.
The PIM level is used to perform an integration conflict analysis to discover
incompatible interfaces. Appropriate connector (mediator) model and code for
required connector components are generated based on results of the conflict
analysis. Our conflict analysis addresses structural, behavioral, communication,
semantic and non-functional property mismatches. For example, the semantic
conflict analysis [6] is carried out using ontology annotations and reasoning with
Prolog.

MOF Level M1

Integration
Business Process

Model

PSM 1
SAP R3 Instance

PIM 1
SAP R3 Instance

Non-Functional
Property

Taxonomy
Model

Conflict
Analysis

Connector
Model

assignmentstrans-
formed to

input

input

input

output

MOF Level M2

Platform Specific
Metamodels

(PSMMs)

Platform
Independent
Metamodel

(PIMM)

Computational
Independent
Metamodel

(CIMM)

trans-
formation
rules

Property
Metamodel

(PMM)

Connector
Metamodel

(CMM)

conflict
analysis
dependencies

links

Fig. 1. BIZYCLE modeling methodology overview (excerpt)

Figure 1 presents part of our modeling methodology [7, 5] and how NFP
modeling is integrated. Dependencies between the framework’s metamodels at
the MOF M2 level are shown on the left side of the figure. Example models at
the M1 level are given on the right (due to space reasons the figure includes
only one PSM and PIM model, usually integration projects involve two or more
systems). Our integration framework offers several metamodels and respective
model editors on platform specific level to describe systems interfaces (PSMMs).
We currently support SAP R/3 ERP systems, J2EE applications, SQL-based
relational database systems, Web Services and XML Schema based files. A set of
transformation rules for each platform is used to perform model transformations

Modeling and Analyzing NFPs to support Software Integration 3

to common abstraction level with a single metamodel (PIMM). The PIMM and
all PSMMs are linked to the Property Metamodel (PMM) presented in this
paper to be able to associate NFPs to model elements at these abstraction levels.
The Connector Metamodel (CMM) provides means to express conflict analysis’
results in terms of Enterprise Application Integration (EAI) patterns [8].

In this paper we report our first practical experiences with model-based sys-
tem integration with respect to NFPs. The rest of the paper is organized as fol-
lows: Section 2 presents a metamodel for expressing user-defined non-functional
properties, their categories and measurement units. We focus on modeling of
non-functional properties in a general way. Compared to the OMG QFTP spec-
ification [9] we are not limited to Quality of Service characteristics and UML
based models. Additionally, we offer explicit modeling of measurement units to
enable model-based comparison and calculation of NFPs. Section 3 describes a
taxonomy with non-functional properties which we identified as relevant in the
software integration context. It was implemented using our NFP metamodel.
Section 4 proposes a method for formal analysis of interface incompatibilities
with respect to these properties. Related work and conclusion are given in Sec-
tion 5 and 6.

2 Non-functional Property Metamodel

In order to model non-functional properties in our integration framework, we
propose a property metamodel (PMM) for expressing NFPs, their categories
and units of measurement and assigning them to other model elements. The
metamodel is implemented in our integration framework using the Eclipse Mod-
eling Framework. In the following we use typewriter font to refer to metamodel
classes and attributes and describe examples on instance level with italic font.

Figure 2 gives abstract syntax of the property metamodel to create property
categories (e. g., performance), non-functional properties (such as throughput)
and units of measurement (such as Mbit/s).

Basic structural Features. Properties and measurement units are modeled
separately and are grouped into categories. The categories and their elements
together form the PropertyModel. A NamedElement metaclass (not shown in
the Figure) passes attributes +shortName:String[1] (for abbreviations, e. g.,
MTTF) and +longName:String[1] (for full names, e. g.,Mean Time To Failure)
to most of the classes.

Properties. The Property metaclass owns the scope-attribute to define NFP
validity. The PropertyScope can be one of the following values:

– System-wide (e. g., mean time to repair of a database system)
– Interface-wide (e. g., availability of a Web service)
– Function-related (e. g., cost per invocation of a Web service operation)
– Parameter-related (e. g., accuracy of a J2EE component method’s return

value)

4 Henning Agt et al.

PropertyModel

+scope : PropertyScope [1..*]
+description : String [1]
+valueType : PropertyValueType [1]

Property

+factor : double [1]
+replaceName : Boolean [1] = false
+symbol : String [1]

Prefix

+allowedSelection : Selection [1]

EnumerationUnit

MeasurementUnitCategory

AbstractMeasurementUnit

+expression : String [1]
+expressionType : String [1]

PropertyCorrelation

+operator : Operator [1]

DerivedUnit

+key : Integer [1]
+rating : Integer [0..1]

EnumerationLiteral

+symbol : String [0..1]

SimpleUnit

PropertyCategory

Multiplication
Division

<<enumeration>>

Operator

Parameter

Interface
Function

System

<<enumeration>>

PropertyScope

ExactlyOne
Many

<<enumeration>>

Selection

PrefixedUnit

units

+unit 0..*

+unitCategory1

+defaultUnit

1

partOf

+sub
Property

0..*
+parent
Property

0..1

+rightUnit1

+simpleUnit1

+leftUnit1

+property

2..*

propertyCategories

+propertyCategory0..*

+model1

unitCategories

+unitCatagory 0..*

+model 1

+prefix1

properties

+property 0..*

+propertyCategory 0..1

+literal 1..*

Fig. 2. Property Metamodel - Properties and units of measurement

The description-attribute includes additional explanatory text of the prop-
erty. The attribute valueType constraints the value kind of a property to
support comparison: character-based values (String), floating point numbers
(Double), integer-based representations (Long) and Boolean-values. Properties
can be nested with the partOf-relation. A property is associated with a default
unit, which is the standard unit for property assignment.

Dependencies between properties can be declared with PropertyCorrelation.
It is evaluated at runtime and can contain mathematical or boolean expressions.
For instance, the calculation rule for availability (A = MTTF

MTTF+MTTR) can be ex-
pressed with MathML Content Markup [10] using property names as variables.

Measurement Units. The metamodel offers four units types to build units of
measurement. The SimpleUnit is used to create basic SI-units [11] or ISO 80000

Modeling and Analyzing NFPs to support Software Integration 5

units such as second or bit. Additionally to shortName and longName attributes,
a symbolic representation of a unit can be specified, if available.

PrefixedUnits are created from simple ones by combining them with Unit-

Multiple. Usually a prefix is added in front of the unit name (e. g., metric
prefix kilo, binary prefix kibi). A prefix of a unit is represented by a factor and
a symbol. Contrary, there exist also non-SI measurement units that replace the
whole unit name (e. g., minute). The change of the name can be controlled by
the replaceName-attribute.

Composed units are modeled with the DerivedUnit2 metaclass. It combines
left- and right-handed units with an Operator. Reuse and nesting of simple units,
prefixed units and derived units is allowed to build all kinds of measurement units
(e. g., kg/m3).

Finally, the EnumerationUnit describes possible values of a property as a
set of EnumerationLiterals for non-numeric NFPs. The allowedSelection-
attribute declares whether a property assignment must use exactly one literal
or can use many literals. The key-attribute of the EnumerationLiteral is an
additional unique numeric code. The rating attribute can assess a literal (e. g.,
to assess encryption algorithms). For example, we use enumerations to model
ISO 4217 currency names.

Assigning Properties. On meta level, the PropertyAssignment (Figure 3)
is the link between the actual non-functional property and elements of other
metamodels that shall be annotated with NFPs. The type-attribute handles
whether the property is offered/provided by the system or interface (e. g., pro-
vided uptime), or expected/required from other systems (e. g., required network
encryption). Property values are either given as a single value (PropertyValue),
as PropertyValueRange (e. g., minimum and maximum) or as a set of single
values (PropertyValueSet). In case the default unit shall be overridden, the
unitModifier is used (constrained to use different prefixes only). Enumeration
unit literals are chosen with enumLiteralSelection (e. g., selecting EUR cur-
rency for a cost property from the currency code enumeration).

Example of a Property Assignment. In this paragraph, we demonstrate
how the connection between different metamodels works. We have developed
a platform specific metamodel [5] to describe interfaces of SAP R/3 enterprise
resource planning systems (system access, communication channels, method sig-
natures, parameter types, etc.). Upper part of Figure 4 presents the established
link between the property metamodel and the SAP metamodel.

The SAP metamodel contains a metaclass SAP R3 that represents a whole
SAP R/3 system. SAP R3 Interfaces are used to access certain parts of the
system. We establish an association between PropertyAssignment and SAP R3

2 In the SI unit system and related ISO specifications the term derived unit usually
refers to a fixed set of measurement units that have been derived from the SI base
units. Here we use the term in a more general object-oriented way. Derived units
are units that can be composed from other units using a formula.

6 Henning Agt et al.

+scope : PropertyScope [1..*]
+description : String [1]
+valueType : PropertyValueType [1]

Property

AbstractMeasurementUnit
AbstractPropertyValue

+type : PropertyType [1]

PropertyAssignment

PropertyValueRange

+key : Integer [1]
+rating : Integer [0..1]

EnumerationLiteral

PropertyValueSet

ProvidedRequired
Required
Provided

<<enumeration>>

PropertyType

+value : String [1]

PropertyValue

+property 1
+unitModifier

0..1

+end 1

+start 1
+value

2..*

+propertyValue 1

+enumLiteralSelection
0..*

Fig. 3. PMM - Property assignment

metaclass to be able to assign any user-defined NFP to a concrete SAP instal-
lation. In our implementation based on the Eclipse Modeling Framework we use
attributes that link between different Ecore files.

Lower part of Figure 4 shows an example of a property assignment on model
level. We use object diagram notation to represent the instances. Instances
Server 1 and purchase management on the left side belong to a platform specific
model of a concrete SAP R/3 system. Right part of the figure depicts excerpt of
our property taxonomy for Throughput and the property assignment. The model
contains two simple units bit and second. The prefixed unit is Mbit. Finally, the
derived unit constitutes Mbit/s, the default unit for the Throughput property.
The assignment links Throughput to Server 1 and associates a value of 100.

+scope : PropertyScope [1..*]
+description : String [1]
+valueType : PropertyValueType [1]

Property

scope = System

shortName = "Throughput"

 : Property
name = "Purchase

management"

 : SAP_R3_Interface

type = Provided

 : PropertyAssignment

longName = "second"

shortName = "s"

 : SimpleUnit

replaceName = false

shortName = "mega"

symbol = "M"

 : Prefix

+type : PropertyType [1]

PropertyAssignment

operator = Division

 : DerivedUnit

name = "Server 1"

 : SAP_R3

shortName = "bit"

 : SimpleUnit

+name : String [1]

SAP_R3_Interface

(from PSMM SAP R3)

value = "100"

 : PropertyValue

 : PrefixedUnit

+name : String [1]

SAP_R3

(from PMM)

+property

0..*0..1

 : prefix

 : property

+interfaces

1..*

 : leftUnit

+property

1

 : simpleUnit

 : propertyValue

 : rightUnit

 : defaultUnit

Fig. 4. Assignment example - SAP R/3 Server 1 provides 100 Mbit/s throughput

Modeling and Analyzing NFPs to support Software Integration 7

3 Non-functional Properties in Software Integration

In this section we present a taxonomy of NFPs which we identified as relevant
in the software integration context (excerpt is given in Figure 5). The taxonomy
is modeled using the metamodel described in the previous section. It is not
intended to be complete, but will be used here as a starting point to discuss
modeling of non-functional aspects of software systems, interfaces, parameters
and connectors, evaluate integration solutions, compute overall properties, detect
non-functional mismatches and rank integration alternatives.

Entries of taxonomy’s first level are property categories that thematically
group NFPs defined at the second level. The third level (not shown in the picture)
characterizes each property with description, type (e. g., float values), scope and
the default unit (e. g., milliseconds for latency or currency codes for cost per
invocation). Units are described according to standards such as ISO 80000-3:2006
(time), ISO 80000-13:2008 (IT units), ISO 8601 (date) or ISO 4217 (currency
codes). In the following we provide more details on each property category.

Fig. 5. Taxonomy of software integration non-functional properties (excerpt)

Reliability incorporates properties related to the ability of a system or com-
ponent to perform its required functions under stated conditions for a specified
period of time. Reliability is the probability that a system operates without fail-
ure for a given time t. Usually, steady-state reliability is used to characterize
integrated systems, where observed interval is the system’s lifetime. Reliability
attributes such as failure-rate (λ) and mean time to system failure (MTTF) can
also be specified.

Availability is similar to reliability, with one important exception: it allows
for a system to fail and to be repaired. Thus, additional properties appear in this

8 Henning Agt et al.

category: mean time to repair (MTTR), mean time between failures (MTBF) as
well as average uptime/downtime per year. Using this category, fault-tolerant
lifecycle of integrated systems and their components can be analyzed.

Cost related NFP are used to compare different software integration al-
ternatives. For example, the comparison of cost per data transfer -properties is
achieved by specifying their unit in terms of a currency code in relation with the
base unit byte with metric or binary prefix. Values with different currencies and
different amounts of data volumes can be compared by determining the current
exchange rate and by converting the units.

Performance category includes properties that are either bandwidth or tim-
ing related. They enable detection of possible integration bottlenecks and allow
investigation of connector features such as caching as well as timing constraints.

Security category describes encryption and access control related proper-
ties. For example, network encryption property consists of three sub-properties
strength, protocol and technology. Encryption strength can be directly compared,
while protocols have to be evaluated based on sets of provided and required enu-
merations, correlations or rating (e. g., SHA vs. RIPEMD).

Capacity properties are considered to avoid system overloads during in-
tegration. For example, data size property specifies the maximum amount of
data that can be passed to a system at once (value type: integer, default unit:
megabyte). Together with throughput, duration of integration runs can be thus
analyzed.

Integrity describes transactional behavior. Isolation level supports read un-
committed, read committed, repeatable read and serializable levels. Timeout
defines system or interface timeout which can be used to discover timing mis-
matches, e. g., if a service with 1 hour timeout is waiting for a service with 1 day
WCET, there is a timing conflict.

Location category describes geographical system/service location, as it may
be necessary to determine validity of an integration scenario. For example, con-
fidential data storage may be restricted to particular countries, because of legal
considerations. To enable this, we include country name and its ISO code, as
well as city and GPS coordinates of the system location.

Result quality describes attributes of the data/messages produced by a
system. Accuracy represents calculation correctness (e. g., number of decimal
places or maximal guaranteed computation error), while precision is the measure
of the system output quality which may be gathered and evaluated statistically
over a period of time, potentially also by users (in form of a reputation scale).

Accessibility is expressed by time-constrained access: it represents concrete
time intervals or periodic time slots in which a system is accessible for integration
tasks (e. g., Extract-Transform-Load tasks on Sundays 0:00-5:00 a.m.).

Figure 6 shows our NFP editor implementation using the plug-in and view
architecture of Eclipse and EMF API to manipulate the models. Here we show
the annotation of an SAP R/3 system interface with different availability and
reliability NFPs and their values.

Modeling and Analyzing NFPs to support Software Integration 9

Fig. 6. Non-functional properties editor

4 Non-functional Property Conflict Analysis

The task of NFP analysis is to determine if there are conflicts (i.e. incompati-
bilities or mismatches) between systems with respect to modeled non-functional
properties. It is especially important in those integration cases where systems are
functionally compatible, but hidden non-functional incompatibility compromises
the integration solution. We provide the following case study: Figure 7 shows an
instance of a so called connector model that describes message-based commu-
nication between the systems. The connector model is used in the last phase
of the BIZYCLE integration process and is mostly generated from the models
at the CIM level (integration business process) and the PIM level (systems and
interfaces on a common abstraction level) and from the other conflict analysis
phases (e. g., semantic or data type analysis [6, 7]). In that last phase we treat
all data exchanged between the systems as messages.

Figure 7 depicts different types of components: Application Endpoints rep-
resenting the integrated systems and Message Processors, equivalent to EAI
patterns [8] such as Aggregators, Routers or Splitters that mediate between ap-
plication endpoints and route and transform messages. The components have
Ports (P) and communicate via Channels (C). A complete language description
can be found in [12]. The given connector model describes integration scenario
with 4 systems: S1, S2, S3 and S4 which are annotated with (among others)
non-functional descriptions, as explained in the previous sections. Based on the

10 Henning Agt et al.

Fig. 7. Case study connector model

connector model, in the process of model transformation we generate an analysis
model to investigate NFP mismatches.

The analysis model describes structural dependencies between connector
components, with respect to NFP. The connector model is treated as a graph
where application endpoints and message processors are vertices and channels
are edges. Sets of source (S) and destination (D) vertices are identified first (in
our example {S1, S2} ∈ S and {S3, S4} ∈ D). Then all paths between S and D
are discovered, using the standard algorithm for the detection of all paths be-
tween two vertices in a graph [13]. For each independent path that is discovered,
a Boolean expression is derived: all vertices and edges on the path are connected
with ∧ if they belong to the same path. If more independent paths exist, they
are connected with ∨. In our example, generated Boolean expression is:

S1 ∧ S2 ∧Agg ∧ Trans ∧Router ∧ (S3 ∨ S4) (1)

Note that we did not include channels in this analysis, assuming that they are
ideal. After this step, Boolean expressions are minimized using the idempotence,
associativity and distributivity rules of the Boolean algebra. Minimized equa-
tions may then be used for verification of several non-functional properties, such
as cost, reliability and availability. We demonstrate how to analyse the latter.

For the purpose of availability analysis, Boolean expression is further trans-
formed into reliability block diagram (RBD), which is the graph with following
semantics: if elements are placed in series, they are statically dependent on each
other. Otherwise, if they are placed in parallel, they are independent. The rules
for this transformation are:

– The blocks of RBD model are all terms appearing in the minimized Boolean
expression.

– If two terms are connected with the operator ∧, RBD blocks are generated for
both terms and placed into serial configuration.

– If two terms are connected with the operator ∨, RBD blocks are generated for
both terms and places into parallel configuration.

After all block elements have been generated, each model element is param-
eterized with MTTF and MTTR parameters from the NFP annotation model.

Modeling and Analyzing NFPs to support Software Integration 11

This enables calculation of availability A of each model element (Table 1). The
RBD equivalent of the connector model from Figure 7 is given in Figure 8.

Fig. 8. Reliability block diagram model

Availability of each model element is calculated as:

A =
MTTF

MTTF +MTTR
(2)

Availability of series (AS) and parallel (AP) configuration of N elements (Ai)
is calculated as (we do not address further issues regarding availability models
as it is out of scope of this paper):

AS =
N∏
i=1

Ai,AP = 1−
N∏
i=1

(1−Ai) (3)

Exponential distribution is further assumed. Note once again that MTTR and
MTTF parameters come from the non-functional annotation model, which has
to be created manually as shown in Figure 6 or generated automatically based on
historical and statistical data for systems/connector components. There are also
numerous industrial studies listing these parameters for various system/software
classes [14, 15].

Instead of solving the model manually, for the purpose of availability anal-
ysis we generate RBD models for the external solver (Sharpe [16]), and obtain
evaluation results for the connector availability shown in the row Connector
of Table 1. This is the provided availability of the entire connector component
which can now be compared with the required availability, if one was specified
in the requirements specification phase.

Based on the analysis we can assert that the connector will run on the average
for more than 2000 hours before it fails. Furthermore, connector repair will take
more than 3 hours on the average. This also means that the connector based
on the properties of its constituent parts and integrated systems will experience
additional 12 hours of unplanned downtime per year. This is critical information
for the integration scenario, because although the systems S1, S2, S3 and S4 may
be functionally compatible, the requirement of the integration scenario may be
that no more than 10 hours of unplanned downtime is allowed. In this case
non-functional incompatibility would be detected.

Another possibility is to directly compare provided availability of source sys-
tems (S1, S2) and connector parts and determine if required availability of target

12 Henning Agt et al.

MTTF MTTR A

S1 8760 0.6 0,99993151

S2 8760 9 0,99897365

Agg 14400 2 0,99986113

Trans 18000 2 0,99988890

Router 9000 2 0,99977782

S3 83220 8 0,99990387

S4 83220 15 0,99981978

Connector 2153.2 3.38 0.99854460

Table 1. Availability analysis results

systems (S3, S4) is satisfied. This is easy to do using the generated model by re-
moving S3 and S4 from the model, reevaluating it and comparing the obtained
value with required availability for S3 and S4. Steady-state availability of the
system thus obtained is 0.99854462. Note that it does not differ greatly from the
overall provided connector availability, because S3 and S4 are highly-available
redundant data stores. Nevertheless, assume that required availability of S3 and
S4 is 0.9980 and 0.9990 respectively. While availability requirements of S3 are
satisfied, it is obvious that S4 will not guarantee correct operations as the rest
of the system is not stable enough. This kind of incompatibility is very difficult,
if not impossible, to determine using current system integration methods. As
already noted, this approach may be used for equivalent calculation/matching
of other non-functional properties, such as costs or accuracy. Properties, such as
WCET or throughput, can be analyzed using a dynamic analysis model (i. e.,
Petri nets).

5 Related Work

Non-functional aspects in software integration relate to several research areas,
i.e., requirements engineering, software engineering, service-oriented architec-
ture, component-based development and model-driven development, in which
non-functional properties/requirements (NFP/NFR), quality of service (QoS)
attributes, and constraints are described, computed and analyzed. Glinz [17]
surveys definitions of theses terms in relation to requirements engineering. We
addressed non-functional properties with respect to software integration. Simi-
lar efforts in other contexts have been made: [18] discusses definitions and tax-
onomies of dependability and security in the context of faults, errors and failures.
A Quality of Service catalog with regard to component-based software develop-
ment is given in [19]. Several NFP ontologies exist, for example [20] compares
existing solutions, such as OWL-QoS and QoSOnt.

Software integration research is today closely coupled with Web services. Sev-
eral proposals have been made for NFP extensions of Web service descriptions,
either XML-based [21, 22] or as UML profiles to support graphical modeling of
non-functional aspects in SOA [23]. Similar extensions are used for Web service

Modeling and Analyzing NFPs to support Software Integration 13

discovery, matchmaking (e. g., DIANE framework [24]) and selection (a survey
can be found in [25]). The tool Ark [23] also supports application code generation
with respect to non-functional properties.

Description and analysis of non-functional properties plays an important role
in software development based on MDA. [26] and [27] contribute frameworks that
propose additional analysis models on CIM, PIM and PSM levels to validate
non-functional properties on different levels of abstraction.

Apart from Web service extensions, metamodels for non-functional property
specification exist. A survey of existing solutions for general non-functional prop-
erty specification can be found in [28]. The OMG QFTP specification [9] provides
an UML profile for QoS modeling that enables association of requirements and
properties to UML model elements. Currently QFTP only offers abstract syn-
tax for QoS models and is intended to be used in real-time domain (as well as
the related specification MARTE). In the context of development of distributed
components [29] defines the Component Quality Modelling Language (CQML),
relates its usage to several different development scenarios and provides com-
putational support for QoS managing and monitoring. Both CQML and QFTP
have very limited support for modeling units of measurement (informative only
and string-based respectively).

Similar to our approach, [30] provides a framework for NFP in component-
based environment. It extends interface (IDL) and architecture (ADL) descrip-
tion languages to describe NFP at design time and then compare provided and
required NFP at runtime. Only three properties are supported (performance,
reliability, availability). [31] analyzes NFR of provided and required component
interfaces. Additionally they provide tactics to resolve mismatches. The frame-
work is process-oriented (manual steps done by a developer) in which capabilities
of components are expressed and compared as goals.

Currently, we are not aware of an integrated solution that supports all the
features we presented. Our solution is not restricted to Web service technology,
UML profiles (assuming system models in UML) or textual IDLs and supports
automatic analysis of non-functional mismatches as well as overall NFP compu-
tation. We provide ready-to-use property model for assignments based on the
NFP metamodel that can be easily used and extended in model-based environ-
ments. It also overcomes weak unit modeling support of other solutions.

6 Conclusion

We presented part of the BIZYCLE integration framework which addresses sys-
tem integration with respect to non-functional properties using model-driven
methods and tools. The main advantage of the proposed solution is the ability
to dynamically create new NFP and include them into analysis. Based on the
NFP metamodel, it is possible to define relevant information necessary for further
formal analysis – we presented an example of transforming integration models
into reliability block diagrams to analyze availability. The project, in its present

14 Henning Agt et al.

form, has been included into our Model-based Integration Framework (MBIF)
tool and is undergoing industrial evaluation within our project consortium.

One challenge that remains however, is to perform analysis of multiple (possi-
bly conflicting) NFP for a single scenario. The idea is to be able to derive optimal
system configuration with respect to more than one NFP (e.g., cost, execution
time and availability) for a given integration setup. Additional problems related
to optimization with multiple criteria and goals arise that we plan to address
using the proposed framework in the future work.

References

1. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4) (Jan 2001) 334–350

2. InterSystems: Ensemble data transformation language. http://docs.intersystems.
com/documentation/ensemble/20091/pdfs/EDTL.pdf (2009)

3. E2E Technologies Ltd: E2E Bridge. http://www.e2ebridge.com/en/e2e.asp
4. Kutsche, R., Milanovic, N.: (Meta-)Models, Tools and Infrastructures for Business

Application Integration. In: UNISCON 2008, Springer Verlag (2008)
5. Agt, H., Bauhoff, G., Cartsburg, M., Kumpe, D., Kutsche, R., Milanovic, N.: Meta-

modeling Foundation for Software and Data Integration. In: Proc. ISTA. (2009)
6. Agt, H., Bauhoff, G., Kutsche, R.D., Milanovic, N., Widiker, J.: Semantic Anno-

tation and Conflict Analysis for Information System Integration. In: Proceedings
of the MDTPI at ECMFA 2010. (2010)

7. Kutsche, R., Milanovic, N., Bauhoff, G., Baum, T., Cartsburg, M., Kumpe, D.,
Widiker, J.: BIZYCLE: Model-based Interoperability Platform for Software and
Data Integration. In: Proceedings of the MDTPI at ECMDA 2008. (2008)

8. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley (2003)
9. OMG: Uml profile for modeling quality of service and fault tolerance characteristics

and mechanisms. http://www.omg.org/spec/QFTP/ (2008)
10. W3C Recommendation: Mathematical Markup Language (MathML) Version 2.0

(Second Edition). http://www.w3.org/TR/MathML2 (2003)
11. International Bureau of Weights and Measures: The International System of Units

(SI) (8th ed.) (2006)
12. Shtelma, M., Cartsburg, M., Milanovic, N.: Executable domain specific language

for message-based system integration. In: Proc. MoDELS. (2009)
13. Thorelli, L.: An algorithm for computing all paths in a graph. Scientific Notes

(BIT 6) (1966)
14. Yankee Group: Global Server Operating System Reliability Survey 2007-2008

(2008)
15. Scheer, G.W., Dolezilek, D.J.: Comparing the Reliability of Ethernet Network

Topologies in Substation control and Monitoring Networks. Schweitzer Engineering
Laboratories TR 6103 (2004)

16. Sahner, R., Trivedi, K., Puliafito, A.: Performance and Reliability Analysis of
Computer Systems. Kluwer Academic Publishers (2002)

17. Glinz, M.: On non-functional requirements. In: Requirements Engineering Con-
ference, 2007. RE ’07. 15th IEEE International. (2007)

18. Laprie, J.C., Randell, B.: Basic concepts and taxonomy of dependable and secure
computing. IEEE Trans. Dependable Secur. Comput. 1(1) (2004) 11–33

Modeling and Analyzing NFPs to support Software Integration 15

19. Brahnmath, G., Raje, R., Olson, A., Bryant, B., Auguston, M., C., B.: A quality
of service catalog for software components. In: Proceedings of the Southeastern
Software Engineering Conference, Alabama (2002) 513–520

20. Dobson, G., Sanchez-Macian, A.: Towards unified qos/sla ontologies. In: SCW ’06:
Proceedings of the IEEE Services Computing Workshops, Washington, DC, USA,
IEEE Computer Society (2006) 169–174

21. Toma, I., Foxvog, D., Paoli, F.D., Comerio, M., Palmonari, M., Maurino, A.:
WSMO Deliverable: Non-Functional Properties in Web Services. Technical report,
STI International (2008)

22. Paoli, F.D., Palmonari, M., Comerio, M., Maurino, A.: A meta-model for non-
functional property descriptions of web services. In: ICWS ’08: Proceedings of
the 2008 IEEE International Conference on Web Services, Washington, DC, USA,
IEEE Computer Society (2008) 393–400

23. Wada, H., Suzuki, J., Oba, K.: A model-driven development framework for non-
functional aspects in service oriented architecture. Int. J. Web Service Res. 5(4)
(2008) 1–31

24. Hamdy, M., König-Ries, B., Küster, U.: Non-functional parameters as first class
citizens in service description and matchmaking - an integrated approach. In:
Service-Oriented Computing - ICSOC 2007 Workshops, Springer-Verlag (2009)

25. Yu, H., Reiff-Marganiec, S.: Non-functional property based service selection: A
survey and classification of approaches. In: NFPSLA-SOC’08, Ireland, Dublin,
CEUR-WS (2008)

26. Jonkers, H., Iacob, M.E., Lankhorst, M.M., Strating, P.: Integration and analysis
of functional and non-functional aspects in model-driven e-service development.
In: EDOC ’05, Washington, DC, USA, IEEE Computer Society (2005)

27. Cortellessa, V., Di Marco, A., Inverardi, P.: Integrating performance and reliability
analysis in a non-functional mda framework. In: FASE. (2007) 57–71

28. Colin, S., Maskoor, A., Lanoix, A., Souquires, J.: A synthesis of existing approaches
to specify non-functional properties. Technical report, Universit Nancy II (2008)

29. Aagedal, J.O.: Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo (2001)

30. Saleh, A., Justo, G.R.R., Winter, S.: Non-functional oriented dynamic integration
of distributed components. Electr. Notes Theor. Comput. Sci. 68(3) (2003)

31. Supakkul, S., Oladimeji, E., Chung, L.: Toward component non-functional interop-
erability analysis: A uml-based and goal-oriented approach. In: Information Reuse
and Integration, 2006 IEEE International Conference on. (2006)

